Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance

被引:0
|
作者
Cui Ma
Xiaowen Wei
Cuihuan Sun
Fei Zhang
Jianren Xu
Xinqing Zhao
Fengwu Bai
机构
[1] Dalian University of Technology,School of Life Science and Biotechnology
[2] Shanghai Jiaotong University,School of Life Science and Biotechnology
[3] Liaoning Academy of Microbiology,undefined
来源
关键词
Artificial transcription factor (ATF); Zinc finger protein (ZFP); Acetic acid tolerance; Ethanol production;
D O I
暂无
中图分类号
学科分类号
摘要
Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.
引用
收藏
页码:2441 / 2449
页数:8
相关论文
共 50 条
  • [1] Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance
    Ma, Cui
    Wei, Xiaowen
    Sun, Cuihuan
    Zhang, Fei
    Xu, Jianren
    Zhao, Xinqing
    Bai, Fengwu
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (05) : 2441 - 2449
  • [2] Improvement of Acetic Acid Tolerance in Saccharomyces cerevisiae by Novel Genome Shuffling
    A. Wawro
    Applied Biochemistry and Microbiology, 2021, 57 : 180 - 188
  • [3] Improvement of Acetic Acid Tolerance in Saccharomyces cerevisiae by Novel Genome Shuffling
    Wawro, A.
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2021, 57 (02) : 180 - 188
  • [4] Identification of novel genes involved in acetic acid tolerance of Saccharomyces cerevisiae using pooled-segregant RNA sequencing
    Fernandez-Nino, Miguel
    Pulido, Sergio
    Stefanoska, Despina
    Perez, Camilo
    Gonzalez-Ramos, Daniel
    van Maris, Antonius J. A.
    Marchal, Kathleen
    Nevoigt, Elke
    Swinnen, Steve
    FEMS YEAST RESEARCH, 2018, 18 (08)
  • [5] Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    Mira, Nuno P.
    Palma, Margarida
    Guerreiro, Joana F.
    Sa-Correia, Isabel
    MICROBIAL CELL FACTORIES, 2010, 9
  • [6] Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    Nuno P Mira
    Margarida Palma
    Joana F Guerreiro
    Isabel Sá-Correia
    Microbial Cell Factories, 9
  • [7] Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae
    Peng Geng
    Yin Xiao
    Yun Hu
    Haiye Sun
    Wei Xue
    Liang Zhang
    Gui-yang Shi
    World Journal of Microbiology and Biotechnology, 2016, 32
  • [8] Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae
    Peng Geng
    Liang Zhang
    Gui Yang Shi
    World Journal of Microbiology and Biotechnology, 2017, 33
  • [9] Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae
    Geng, Peng
    Zhang, Liang
    Shi, Gui Yang
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2017, 33 (05):
  • [10] Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae
    Geng, Peng
    Xiao, Yin
    Hu, Yun
    Sun, Haiye
    Xue, Wei
    Zhang, Liang
    Shi, Gui-yang
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2016, 32 (09):