Autoencoder-based improved deep learning approach for schizophrenic EEG signal classification

被引:0
|
作者
Sebamai Parija
Mrutyunjaya Sahani
Ranjeeta Bisoi
P. K. Dash
机构
[1] Siksha O Anusandhan Deemed to be University,
来源
关键词
Schizophrenia; Multichannel scalp electroencephalogram; Deep-stacked error minimized extreme learning machine autoencoder; Minimum variance multikernel random vector functional link network; Sine–cosine monarch butterfly optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, deep-stacked error minimized extreme learning machine autoencoder (DSEMELMAE) and sine–cosine monarch butterfly optimization-based minimum variance multikernel random vector functional link network are integrated to recognize the schizophrenia electroencephalogram (EEG) data. The unconventional DSEMELMAE network is modelled to derive very unique unsupervised attributes out of the brain signals and employ as inputs to the proposed supervised SCAMBO-MVMKRVFLN classification methodology to recognize accurately by minimizing the mean-square error for identifying schizophrenia data with encouraging accuracy. The DSEMELMAE-SCAMBO-MVMKRVFLN integrated approach is assessed over benchmark EEG databases. The proposed approach is compared with many related RVFLN-based deep learning approaches and many state-of-the-art methods and found to be the outperformer among all the methods, and this approach is highly accepted owing to faster learning speed, better computational simplicity, good generalization capability, outstanding classification accuracy, and small event identification time. The classifier MVMKRVFLN is unique as it classifies the signal with advantages such as the regularization of the randomization, computational economy, less training expenses, the direct inverse along with minimum reconstruction error. The KRVFLN uses multiple kernels such as wavelet, tan hyperbolic and multiquadric to improve the classification performance. The effectiveness of the proposed method is verified by examining three publicly available schizophrenic EEG datasets such as Poland, Kaggle and Moscow datasets and achieved classification accuracies with 99.989%, 95.012% and 96.69%, respectively. The recognition capability, simplicity and robustness of the proposed methodology prove the outstanding overall performances of schizophrenia recognition and diagnosis in comparison with other state-of-the-art approaches and different learning approaches.
引用
收藏
页码:403 / 435
页数:32
相关论文
共 50 条
  • [1] Autoencoder-based improved deep learning approach for schizophrenic EEG signal classification
    Parija, Sebamai
    Sahani, Mrutyunjaya
    Bisoi, Ranjeeta
    Dash, P. K.
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 403 - 435
  • [2] An Improved Approach for EEG Signal Classification using Autoencoder
    Nair, Abhijith V.
    Kumar, Kodidasu Murali
    Mathew, Jimson
    PROCEEDINGS OF THE 2018 8TH INTERNATIONAL SYMPOSIUM ON EMBEDDED COMPUTING AND SYSTEM DESIGN (ISED 2018), 2018, : 6 - 10
  • [3] An autoencoder-based deep learning approach for clustering time series data
    Tavakoli, Neda
    Siami-Namini, Sima
    Khanghah, Mahdi Adl
    Soltani, Fahimeh Mirza
    Namin, Akbar Siami
    SN APPLIED SCIENCES, 2020, 2 (05):
  • [4] An autoencoder-based deep learning approach for clustering time series data
    Neda Tavakoli
    Sima Siami-Namini
    Mahdi Adl Khanghah
    Fahimeh Mirza Soltani
    Akbar Siami Namin
    SN Applied Sciences, 2020, 2
  • [5] An Autoencoder-Based Deep Learning Approach for Load Identification in Structural Dynamics
    Rosafalco, Luca
    Manzoni, Andrea
    Mariani, Stefano
    Corigliano, Alberto
    SENSORS, 2021, 21 (12)
  • [6] A Deep Autoencoder-Based Knowledge Transfer Approach
    Tirumala, Sreenivas Sremath
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA ENGINEERING, 2018, 9 : 277 - 284
  • [7] Photodiagnosis with deep learning: A GAN and autoencoder-based approach for diabetic retinopathy detection
    Gencer, Kerem
    Gencer, Gulcan
    Ceran, Tugce Horozoglu
    Er Bilir, Aynur
    Dogan, Mustafa
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2025, 53
  • [8] An autoencoder-based deep learning method for genotype imputation
    Song, Meng
    Greenbaum, Jonathan
    Luttrell, Joseph
    Zhou, Weihua
    Wu, Chong
    Luo, Zhe
    Qiu, Chuan
    Zhao, Lan Juan
    Su, Kuan-Jui
    Tian, Qing
    Shen, Hui
    Hong, Huixiao
    Gong, Ping
    Shi, Xinghua
    Deng, Hong-Wen
    Zhang, Chaoyang
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [9] Two-Phase Multitask Autoencoder-Based Deep Learning Framework for Subject-Independent EEG Motor Imagery Classification
    Jin, Changgyun
    Song, Andrew H.
    Kim, Seong-Eun
    IEEE ACCESS, 2024, 12 : 77356 - 77367
  • [10] Classification of Epileptic EEG Signals with Stacked Sparse Autoencoder Based on Deep Learning
    Lin, Qin
    Ye, Shu-qun
    Huang, Xiu-mei
    Li, Si-you
    Zhang, Mei-zhen
    Xue, Yun
    Chen, Wen-Sheng
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2016, PT III, 2016, 9773 : 802 - 810