Path independent choice and the ranking of opportunity sets

被引:0
|
作者
Matthew Ryan
机构
[1] University of Auckland,Department of Economics and Centre for Mathematical Social Science (CMSS)
来源
Social Choice and Welfare | 2014年 / 42卷
关键词
Binary Relation; Choice Function; Indirect Utility; Instrumentalist Approach; Strong Monotonicity;
D O I
暂无
中图分类号
学科分类号
摘要
The indirect utility principle provides an instrumentalist basis for ranking opportunity sets, given an underlying preference ranking on alternatives. Opportunity set A is weakly preferred to B if A includes at least one preference-maximising element from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\cup B$$\end{document}. We introduce the Plott consistency principle as a natural extension of this logic to decision-makers who choose amongst alternatives according to a path independent choice function. Such choice functions need not be rationalisable by a preference order. Plott consistency requires that A is an acceptable choice from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ A, B\right\} $$\end{document} if A includes at least one element from the set of acceptable choices from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\cup B$$\end{document}. We explore necessary and sufficient conditions (imposed on a choice function defined on collections of opportunity sets) for Plott consistency.
引用
收藏
页码:193 / 213
页数:20
相关论文
共 50 条