Characters of odd degree and Thompson’s character degree theorem

被引:0
|
作者
Kamal Aziziheris
Alireza Karami Mamaghani
机构
[1] University of Tabriz,Department of Pure Mathematics, Faculty of Mathematical Sciences
关键词
Solvable group; 2-nilpotent group; Character degree; 20C15;
D O I
暂无
中图分类号
学科分类号
摘要
For a positive integer m and a finite group G, let u2′(G,m)=∑χ∈Irr2′(G)χ(1)m∑χ∈Irr2′(G)χ(1)m-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{2'}(G,m)=\frac{\sum _{\chi \in \mathrm{Irr}_{2'}(G)}\chi (1)^{m}}{\sum _{\chi \in \mathrm{Irr}_{2'}(G)}\chi (1)^{m-1}}, \end{aligned}$$\end{document}where Irr2′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Irr}_{2'}(G)$$\end{document} denotes the set of all complex irreducible characters of G of odd degrees. The Thompson’s theorem on character degrees states that if u2′(G,m)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{2'}(G,m)=1$$\end{document}, then G is 2-nilpotent. In this paper, we prove that if u2′(G,m)<3+3m3+3m-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{2'}(G,m)< \frac{3+3^{m}}{3+3^{m-1}}, \end{aligned}$$\end{document}then G is 2-nilpotent. This is a strengthened version of Thompson’s theorem in terms of u2′(G,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{2'}(G,m)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Characters of odd degree and Thompson's character degree theorem
    Aziziheris, Kamal
    Mamaghani, Alireza Karami
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [2] Characters of p'-degree and Thompson's character degree theorem
    Nguyen Ngoc Hung
    REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) : 117 - 138
  • [3] Variations on Thompson's character degree theorem
    Navarro, G
    Wolf, T
    GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 371 - 374
  • [4] Characters of odd degree Characters of odd degree
    Malle, Gunter
    Spaeth, Britta
    ANNALS OF MATHEMATICS, 2016, 184 (03) : 869 - 908
  • [5] Projective characters of odd degree
    Higgs, RJ
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (10) : 3133 - 3140
  • [6] CHARACTER DEGREE GRAPH OF SOLVABLE GROUPS WITH ODD DEGREE
    Sivanesan, G.
    Selvaraj, C.
    arXiv, 2023,
  • [7] Characters of odd degree of symmetric groups
    Giannelli, Eugenio
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 1 - 14
  • [8] Restriction of Odd Degree Characters of Sn
    Bessenrodt, Christine
    Giannelli, Eugenio
    Olsson, Jorn B.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [9] Generalizations of the odd degree theorem and applications
    Shmuel Friedland
    Anatoly S. Libgober
    Israel Journal of Mathematics, 2003, 136 : 353 - 371
  • [10] Generalizations of the odd degree theorem and applications
    Friedland, S
    Libgober, AS
    ISRAEL JOURNAL OF MATHEMATICS, 2003, 136 (1) : 353 - 371