Numerical Simulations of Viscoelastic Fluid Flows Past a Transverse Slot Using Least-Squares Finite Element Methods

被引:0
|
作者
Hsueh-Chen Lee
Hyesuk Lee
机构
[1] Wenzao Ursuline University of Languages,General Education Center
[2] Clemson University,Department of Mathematical Sciences
来源
关键词
Least-squares; The PTT model; Hole pressure; Normal-stress difference; Transverse slot; Weissenberg number;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a least-squares (LS) finite element method for linear Phan-Thien–Tanner (PTT) viscoelastic fluid flows. We consider stabilized weights in the LS method for the viscoelastic model and prove that the LS approximation converges to the linearized solutions of the linear PTT model; the convergence is at the optimal rate for the velocity in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document}-norm and at suboptimal rates for the stress and pressure in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-norm, respectively. For numerical experiments we first consider the flow through a planar channel to illustrate our theoretical results. The LS method is then applied to a flow through the slot channel with two depth ratios and the effects of physical parameters are discussed. Numerical solutions of the channel problem indicate that flow characteristics of the viscoelastic polymer solution are described by the results obtained using the method. Furthermore, we present the hole pressure for various Weissenberg numbers, and compare with that derived from the Higashitani–Pritchard (HP) theory.
引用
收藏
页码:369 / 388
页数:19
相关论文
共 50 条
  • [1] Numerical Simulations of Viscoelastic Fluid Flows Past a Transverse Slot Using Least-Squares Finite Element Methods
    Lee, Hsueh-Chen
    Lee, Hyesuk
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 369 - 388
  • [2] Least-squares finite element methods for generalized Newtonian and viscoelastic flows
    Chen, T. F.
    Cox, C. L.
    Lee, H. C.
    Tung, K. L.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (10) : 1024 - 1040
  • [3] AN A POSTERIORI ERROR ESTIMATOR BASED ON LEAST-SQUARES FINITE ELEMENT SOLUTIONS FOR VISCOELASTIC FLUID FLOWS
    LEE, HSUEH-CHEN
    Lee, Hyesuk
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (04): : 2755 - 2770
  • [4] Simulations of incompressible fluid flows by a least squares finite element method
    Pereira, V.D.
    Campos Silva, J.B.
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2005, 27 (03) : 274 - 282
  • [5] Applications of least-squares finite element methods to compressible internal flows
    Sullerey, RK
    Azim, SW
    INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES, 1999, 16 (04) : 231 - 239
  • [6] Least-squares mixed finite element of steady state viscoelastic fluid flow
    Cai, Yinghao
    Zhang, Hongwei
    Cai, Haitao
    Piers 2007 Beijing: Progress in Electromagnetics Research Symposium, Pts I and II, Proceedings, 2007, : 1246 - 1250
  • [7] Finite element methods of least-squares type
    Bochev, PB
    Gunzburger, MD
    SIAM REVIEW, 1998, 40 (04) : 789 - 837
  • [8] Least-squares finite element formulations for viscous incompressible and compressible fluid flows
    Pontaza, JP
    Reddy, JN
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (19-22) : 2454 - 2494
  • [9] Discrete least-squares finite element methods
    Keith, Brendan
    Petrides, Socratis
    Fuentes, Federico
    Demkowicz, Leszek
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 226 - 255
  • [10] On multigrid methods for the solution of least-squares finite element models for viscous flows
    Ranjan, Rakesh
    Reddy, J. N.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2012, 26 (01) : 45 - 65