An efficient numerical method for pricing option under jump diffusion model

被引:0
|
作者
Mohan K. Kadalbajoo
Alpesh Kumar
Lok Pati Tripathi
机构
[1] Indian Institute of Technology Kanpur,Department of Mathematics and Statistics
关键词
Radial basis function; Finite difference; Option pricing; Jump-diffusion models; Partial integro-differential equation;
D O I
10.1007/s12572-015-0136-z
中图分类号
学科分类号
摘要
The aim of the present manuscript is to develop an efficient and accurate numerical method for pricing the option when underlying asset follows jump diffusion process. The governing equation is time semi discretized by using the implicit–explicit Crank-Nicolson Leap-Frog scheme followed by radial basis function based finite difference method. Numerical results are presented to show the efficiency of the methods for put and call option under Merton and Kou model. The stability of time semi discretized scheme is also proved.
引用
收藏
页码:114 / 123
页数:9
相关论文
共 50 条
  • [1] An efficient numerical method for pricing option under jump diffusion model
    Kadalbajoo, Mohan K.
    Kumar, Alpesh
    Tripathi, Lok Pati
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2015, 7 (03) : 114 - 123
  • [2] Option pricing under jump diffusion model
    Li, Qian
    Wang, Li
    STATISTICS & PROBABILITY LETTERS, 2024, 211
  • [3] NUMERICAL APPROXIMATION OF OPTION PRICING MODEL UNDER JUMP DIFFUSION USING THE LAPLACE TRANSFORMATION METHOD
    Lee, Hyoseop
    Sheen, Dongwoo
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (04) : 566 - 583
  • [4] Option pricing under a double exponential jump diffusion model
    Kou, SG
    Wang, H
    MANAGEMENT SCIENCE, 2004, 50 (09) : 1178 - 1192
  • [5] Numerical analysis of American option pricing in a jump-diffusion model
    Zhang, XL
    MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) : 668 - 690
  • [6] Pricing of a Binary Option Under a Mixed Exponential Jump Diffusion Model
    Lu, Yichen
    Song, Ruili
    MATHEMATICS, 2024, 12 (20)
  • [7] A jump-diffusion model for option pricing under fuzzy environments
    Xu, Weidong
    Wu, Chongfeng
    Xu, Weijun
    Li, Hongyi
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 337 - 344
  • [8] Option Pricing Under a Mixed-Exponential Jump Diffusion Model
    Cai, Ning
    Kou, S. G.
    MANAGEMENT SCIENCE, 2011, 57 (11) : 2067 - 2081
  • [9] A jump-diffusion model for option pricing
    Kou, SG
    MANAGEMENT SCIENCE, 2002, 48 (08) : 1086 - 1101
  • [10] EQUILIBRIUM ASSET AND OPTION PRICING UNDER JUMP DIFFUSION
    Zhang, Jin E.
    Zhao, Huimin
    Chang, Eric C.
    MATHEMATICAL FINANCE, 2012, 22 (03) : 538 - 568