A proximal gradient method for control problems with non-smooth and non-convex control cost

被引:0
|
作者
Carolin Natemeyer
Daniel Wachsmuth
机构
[1] Universität Würzburg,Institut für Mathematik
关键词
Proximal gradient method; Non-smooth and non-convex optimization; Sparse control problems;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the convergence of the proximal gradient method applied to control problems with non-smooth and non-convex control cost. Here, we focus on control cost functionals that promote sparsity, which includes functionals of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-type for p∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [0,1)$$\end{document}. We prove stationarity properties of weak limit points of the method. These properties are weaker than those provided by Pontryagin’s maximum principle and weaker than L-stationarity.
引用
收藏
页码:639 / 677
页数:38
相关论文
共 50 条
  • [1] A proximal gradient method for control problems with non-smooth and non-convex control cost
    Natemeyer, Carolin
    Wachsmuth, Daniel
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 80 (02) : 639 - 677
  • [2] Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems
    Yang, Lei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (01) : 68 - 103
  • [3] Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems
    Lei Yang
    Journal of Optimization Theory and Applications, 2024, 200 : 68 - 103
  • [4] Inexact Proximal Gradient Methods for Non-Convex and Non-Smooth Optimization
    Gu, Bin
    Wang, De
    Huo, Zhouyuan
    Huang, Heng
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3093 - 3100
  • [5] Fast Proximal Gradient Descent for A Class of Non-convex and Non-smooth Sparse Learning Problems
    Yang, Yingzhen
    Yu, Jiahui
    35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), 2020, 115 : 1253 - 1262
  • [6] Effective Proximal Methods for Non-convex Non-smooth Regularized Learning
    Liang, Guannan
    Tong, Qianqian
    Ding, Jiahao
    Pan, Miao
    Bi, Jinbo
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 342 - 351
  • [7] Inertial Block Proximal Methods For Non-Convex Non-Smooth Optimization
    Le Thi Khanh Hien
    Gillis, Nicolas
    Patrinos, Panagiotis
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [8] A method to construct a quasi-normal cone for non-convex and non-smooth set and its applications to non-convex and non-smooth optimization
    Li, Hongwei
    Zhou, Dequn
    Liu, Qinghuai
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1585 - +
  • [9] Reduced subgradient bundle method for linearly constrained non-smooth non-convex problems
    El Ghali, A.
    El Moudden, M.
    OPTIMIZATION, 2021, 70 (10) : 2103 - 2130
  • [10] Convergence guarantees for a class of non-convex and non-smooth optimization problems
    Khamaru, Koulik
    Wainwright, Martin J.
    Journal of Machine Learning Research, 2019, 20