On augmented Lagrangians for Optimization Problems with a Single Constraint

被引:0
|
作者
R. N. Gasimov
A. M. Rubinov
机构
[1] Osmangazi University,Department of Industrial Engineering
[2] SITMS,undefined
[3] University of Ballarat Victoria,undefined
来源
关键词
Augmented Lagrangians; Lagrange-type functions; Supergradient method;
D O I
暂无
中图分类号
学科分类号
摘要
We examine augmented Lagrangians for optimization problems with a single (either inequality or equality) constraint. We establish some links between augmented Lagrangians and Lagrange-type functions and propose a new kind of Lagrange-type functions for a problem with a single inequality constraint. Finally, we discuss a supergradient algorithm for calculating optimal values of dual problems corresponding to some class of augmented Lagrangians.
引用
收藏
页码:153 / 173
页数:20
相关论文
共 50 条
  • [1] On augmented Lagrangians for optimization problems with a single constraint
    Gasimov, RN
    Rubinov, AM
    JOURNAL OF GLOBAL OPTIMIZATION, 2004, 28 (02) : 153 - 173
  • [2] Augmented lagrangians and sphere packing problems
    Martínez, JM
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 70 (01) : 75 - 86
  • [3] Exact augmented Lagrangians for constrained optimization problems in Hilbert spaces I: theory
    Dolgopolik, M. V.
    OPTIMIZATION, 2024, 73 (05) : 1355 - 1395
  • [4] Approximate Augmented Lagrangians for Distributed Network Optimization
    Chatzipanagiotis, Nikolaos
    Dentcheva, Darinka
    Zavlanos, Michael M.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 5840 - 5845
  • [5] Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization
    H. Z. Luo
    G. Mastroeni
    H. X. Wu
    Journal of Optimization Theory and Applications, 2010, 144 : 275 - 290
  • [6] On saddle points of augmented Lagrangians for constrained nonconvex optimization
    Sun, XL
    Li, D
    McKinnon, KIM
    SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) : 1128 - 1146
  • [7] On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization
    Gulcin Dinc Yalcin
    Refail Kasimbeyli
    Mathematical Methods of Operations Research, 2020, 92 : 199 - 228
  • [8] Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization
    Luo, H. Z.
    Mastroeni, G.
    Wu, H. X.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 144 (02) : 275 - 290
  • [9] On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization
    Yalcin, Gulcin Dinc
    Kasimbeyli, Refail
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 92 (01) : 199 - 228
  • [10] Splitting augmented Lagrangian method for optimization problems with a cardinality constraint and semicontinuous variables
    Bai, Yanqin
    Liang, Renli
    Yang, Zhouwang
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (05): : 1089 - 1109