The subfield codes of several classes of linear codes

被引:0
|
作者
Xiaoqiang Wang
Dabin Zheng
机构
[1] Hubei University,Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics
来源
关键词
Weight distribution; Subfield code; Linear code; Optimal code; 94B05; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let F2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{m}}$\end{document} be the finite field with 2m elements, where m is a positive integer. Recently, Heng and Ding in (Finite Fields Appl. 56:308–331, 2019) studied the subfield codes of two families of hyperovel codes and determined the weight distribution of the linear code Ca,b=((Tr1m(af(x)+bx)+c)x∈F2m,Tr1m(a),Tr1m(b)):a,b∈F2m,c∈F2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}_{a,b}=\left\{((\text{Tr}_{1}^{m}(a f(x)+bx)+c)_{x \in \mathbb{F}_{2^{m}}}, \text{Tr}_{1}^{m}(a), \text{Tr}_{1}^{m}(b)) : a,b \in \mathbb{F}_{2^{m}}, c \in \mathbb{F}_{2}\right\}, $$\end{document} for f(x) = x2 and f(x) = x6 with odd m. Let v2(⋅) denote the 2-adic order function. This paper investigates more subfield codes of linear codes and obtains the weight distribution of Ca,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}_{a,b}$\end{document} for f(x)=x2i+2j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x)=x^{2^{i}+2^{j}}$\end{document}, where i, j are nonnegative integers such that v2(m) ≤ v2(i − j)(i ≥ j). In addition to this, we further investigate the punctured code of Ca,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}_{a,b}$\end{document} as follows: Ca=((Tr1m(ax2i+2j+bx)+c)x∈F2m,Tr1m(a)):a,b∈F2m,c∈F2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}_{a}=\left\{((\text{Tr}_{1}^{m}(a x^{2^{i}+2^{j}}+bx)+c)_{x \in \mathbb{F}_{2^{m}}}, \text{Tr}_{1}^{m}(a)) : a,b \in \mathbb{F}_{2^{m}}, c \in \mathbb{F}_{2}\right\}, $$\end{document} and determine its weight distribution for any nonnegative integers i, j. The parameters of these binary linear codes are new in most cases. Some of the codes and their duals obtained are optimal or almost optimal.
引用
收藏
页码:1111 / 1131
页数:20
相关论文
共 50 条
  • [1] The subfield codes of several classes of linear codes
    Wang, Xiaoqiang
    Zheng, Dabin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (06): : 1111 - 1131
  • [2] Several classes of linear codes with AMDS duals and their subfield codes
    Qiao, Xingbin
    Du, Xiaoni
    Yuan, Wenping
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, : 1429 - 1448
  • [3] The trace codes of several classes of linear codes
    Wu, Tingting
    Zhu, Shixin
    Liu, Li
    Xie, Xianhong
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [4] Subfield Codes of Several Few-Weight Linear Codes Parameterized by Functions and Their Consequences
    Xu, Li
    Fan, Cuiling
    Mesnager, Sihem
    Luo, Rong
    Yan, Haode
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (06) : 3941 - 3964
  • [5] A class of subfield codes of linear codes and their duals
    Wang, Xiaoqiang
    Zheng, Dabin
    Zhang, Yan
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (01): : 173 - 196
  • [6] A class of subfield codes of linear codes and their duals
    Xiaoqiang Wang
    Dabin Zheng
    Yan Zhang
    Cryptography and Communications, 2021, 13 : 173 - 196
  • [7] Several classes of linear codes and their weight distributions
    Xiaoqiang Wang
    Dabin Zheng
    Hongwei Liu
    Applicable Algebra in Engineering, Communication and Computing, 2019, 30 : 75 - 92
  • [8] Several classes of linear codes and their weight distributions
    Wang, Xiaoqiang
    Zheng, Dabin
    Liu, Hongwei
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2019, 30 (01) : 75 - 92
  • [9] A family of linear codes with few weights and their subfield codes
    Ding, Yun
    Zhu, Shixin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2025, 17 (01): : 207 - 238
  • [10] Quaternary Linear Codes and Related Binary Subfield Codes
    Wu, Yansheng
    Li, Chengju
    Xiao, Fu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3070 - 3080