共 2 条
Spatiotemporal interpolation of precipitation across Xinjiang, China using space-time CoKriging利用时空协同克里金方法时空估算中国新疆降水量
被引:0
|作者:
Dan-gui Hu
Hong Shu
机构:
[1] Wuhan University,State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Collaborative Innovation Center of Geospatial Technology
[2] Wuhan Polytechnic,College of Computer Technology and Software Engineering
来源:
关键词:
space-time CoKriging;
product-sum model;
variogram;
precipitation;
interpolation;
时空协同克里金;
积和模型;
变异函数;
降水量;
插值法;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy.
引用
收藏
页码:684 / 694
页数:10
相关论文