A Categorical Approach to Groupoid Frobenius Algebras

被引:0
|
作者
David N. Pham
机构
[1] Marymount Manhattan College,Department of Mathematics
来源
Applied Categorical Structures | 2014年 / 22卷
关键词
Groupoids; Frobenius objects; Drinfeld double;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}$\end{document}-Frobenius algebras (for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}$\end{document} a finite groupoid) correspond to a particular class of Frobenius objects in the representation category of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D(k[\mathcal{G}])$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D(k[\mathcal{G}])$\end{document} is the Drinfeld double of the quantum groupoid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k[\mathcal{G}]$\end{document} (Nikshych et al. 2000).
引用
收藏
页码:419 / 455
页数:36
相关论文
共 50 条