Solution approach to multi-objective linear fractional programming problem using parametric functions

被引:0
|
作者
Suvasis Nayak
Akshay Kumar Ojha
机构
[1] Indian Institute of Technology Bhubaneswar,School of Basic Sciences
来源
OPSEARCH | 2019年 / 56卷
关键词
Multi-objective LFPP; Pareto optimal solution; -Constraint method; Parametric function; Fuzzy programming;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an iterative technique based on the use of parametric functions is proposed to obtain the best preferred optimal solution of a multi-objective linear fractional programming problem. The decision maker ascertains own desired tolerance values for the objectives as termination constants and imposes them on each iteratively computed objective functions in terms of termination conditions. Each fractional objective is transformed into non-fractional parametric function using certain initial values of parameters. The parametric values are iteratively computed and ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-constraint method is used to obtain the pareto (weakly) optimal solutions in each step. The computations get terminated when all the termination conditions are satisfied at a pareto optimal solution of an iterative step. A numerical example is discussed at the end to illustrate the proposed method and fuzzy max–min operator method is applied to validate the obtained results.
引用
收藏
页码:174 / 190
页数:16
相关论文
共 50 条
  • [1] Solution approach to multi-objective linear fractional programming problem using parametric functions
    Nayak, Suvasis
    Ojha, Akshay Kumar
    OPSEARCH, 2019, 56 (01) : 174 - 190
  • [2] Parametric approach for multi-objective enhanced interval linear fractional programming problem
    Patel, Mridul
    Behera, Jyotirmayee
    Kumar, Pankaj
    ENGINEERING OPTIMIZATION, 2024, 56 (05) : 740 - 765
  • [3] Tackling the fuzzy multi-objective linear fractional problem using a parametric approach
    Borza, Mojtaba
    Rambely, Azmin Sham
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (01) : 721 - 734
  • [4] Tackling the fuzzy multi-objective linear fractional problem using a parametric approach
    Borza, Mojtaba
    Rambely, Azmin Sham
    Journal of Intelligent and Fuzzy Systems, 2022, 43 (01): : 721 - 734
  • [5] FGP approach to quadratically constrained multi-objective quadratic fractional programming with parametric functions
    Vandana Goyal
    Namrata Rani
    Deepak Gupta
    OPSEARCH, 2022, 59 : 594 - 602
  • [6] A fuzzy approach for the intuitionistic multi-objective linear fractional programming problem using a bisection method
    Kara, Nurdan
    Kocken, Hale Gonce
    Akdemir, Hande Gunay
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2025, 49 (02)
  • [7] FGP approach to quadratically constrained multi-objective quadratic fractional programming with parametric functions
    Goyal, Vandana
    Rani, Namrata
    Gupta, Deepak
    OPSEARCH, 2022, 59 (02) : 594 - 602
  • [8] Optimization for multi-objective sum of linear and linear fractional programming problem: fuzzy nonlinear programming approach
    C. Veeramani
    S. Sharanya
    Ali Ebrahimnejad
    Mathematical Sciences, 2020, 14 : 219 - 233
  • [9] Optimization for multi-objective sum of linear and linear fractional programming problem: fuzzy nonlinear programming approach
    Veeramani, C.
    Sharanya, S.
    Ebrahimnejad, Ali
    MATHEMATICAL SCIENCES, 2020, 14 (03) : 219 - 233
  • [10] Solution of Multi Objective Linear Fractional Programming Problem by Taylor Series Approach
    De, P. K.
    Deb, Moumita
    PROCEEDINGS 2015 INTERNATIONAL CONFERENCE ON MAN AND MACHINE INTERFACING (MAMI), 2015,