A Neuro-evolutionary Hyper-heuristic Approach for Constraint Satisfaction Problems

被引:0
|
作者
José Carlos Ortiz-Bayliss
Hugo Terashima-Marín
Santiago Enrique Conant-Pablos
机构
[1] University of Nottingham,Automated Scheduling, Optimisation and Planning (ASAP) Research Group School of Computer Science, Jubilee Campus
[2] Tecnológico de Monterrey,National School of Engineering and Science
来源
Cognitive Computation | 2016年 / 8卷
关键词
Constraint satisfaction; Hyper-heuristics; Neural networks; Evolutionary computation;
D O I
暂无
中图分类号
学科分类号
摘要
Constraint satisfaction problems represent an important topic of research due to their multiple applications in various areas of study. The most common way to solve this problem involves the use of heuristics that guide the search into promising areas of the space. In this article, we present a novel way to combine the strengths of distinct heuristics to produce solution methods that perform better than such heuristics on a wider range of instances. The methodology proposed produces neural networks that represent hyper-heuristics for variable ordering in constraint satisfaction problems. These neural networks are generated and trained by running a genetic algorithm that has the task of evolving the topology of the networks and some of their learning parameters. The results obtained suggest that the produced neural networks represent a feasible alternative for coding hyper-heuristics that control the use of different heuristics in such a way that the cost of the search is minimized.
引用
收藏
页码:429 / 441
页数:12
相关论文
共 50 条
  • [1] A Neuro-evolutionary Hyper-heuristic Approach for Constraint Satisfaction Problems
    Carlos Ortiz-Bayliss, Jose
    Terashima-Marin, Hugo
    Enrique Conant-Pablos, Santiago
    COGNITIVE COMPUTATION, 2016, 8 (03) : 429 - 441
  • [2] Combine and conquer: an evolutionary hyper-heuristic approach for solving constraint satisfaction problems
    Carlos Ortiz-Bayliss, Jose
    Terashima-Marin, Hugo
    Enrique Conant-Pablos, Santiago
    ARTIFICIAL INTELLIGENCE REVIEW, 2016, 46 (03) : 327 - 349
  • [3] Combine and conquer: an evolutionary hyper-heuristic approach for solving constraint satisfaction problems
    José Carlos Ortiz-Bayliss
    Hugo Terashima-Marín
    Santiago Enrique Conant-Pablos
    Artificial Intelligence Review, 2016, 46 : 327 - 349
  • [4] Exploring Heuristic Interactions in Constraint Satisfaction Problems: A Closer Look at the Hyper-Heuristic Space
    Ortiz-Bayliss, Jose C.
    Terashima-Marin, Hugo
    Oezcan, Ender
    Parkes, Andrew J.
    Conant-Pablos, Santiago E.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 3307 - 3314
  • [5] A Hyper-Heuristic Approach to Strip Packing Problems
    Burke, Edmund K.
    Guo, Qiang
    Kendall, Graham
    PARALLEL PROBLEMS SOLVING FROM NATURE - PPSN XI, PT I, 2010, 6238 : 465 - 474
  • [6] A Genetic Programming Hyper-heuristic: Turning Features into Heuristics for Constraint Satisfaction
    Ortiz-Bayliss, Jose Carlos
    Oezcan, Ender
    Parkes, Andrew J.
    Terashima-Marin, Hugo
    2013 13TH UK WORKSHOP ON COMPUTATIONAL INTELLIGENCE (UKCI), 2013, : 183 - 190
  • [7] Evolutionary Multilabel Hyper-Heuristic Design
    Rosales-Perez, Alejandro
    Gutierrez-Rodriguez, Andres E.
    Ortiz-Bayliss, Jose C.
    Terashima-Marin, Hugo
    Coello Coello, Carlos A.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 2622 - 2629
  • [8] An evolutionary-based hyper-heuristic approach for the Jawbreaker puzzle
    S. Salcedo-Sanz
    J. M. Matías-Román
    S. Jiménez-Fernández
    A. Portilla-Figueras
    L. Cuadra
    Applied Intelligence, 2014, 40 : 404 - 414
  • [9] An evolutionary-based hyper-heuristic approach for the Jawbreaker puzzle
    Salcedo-Sanz, S.
    Matias-Roman, J. M.
    Jimenez-Fernandez, S.
    Portilla-Figueras, A.
    Cuadra, L.
    APPLIED INTELLIGENCE, 2014, 40 (03) : 404 - 414
  • [10] Hyper-Heuristic Evolutionary Approach for Constructing Decision Tree Classifiers
    Kumar, Sunil
    Ratnoo, Saroj
    Vashishtha, Jyoti
    JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY-MALAYSIA, 2021, 20 (02): : 249 - 276