Graphs and Closed Surfaces Associated with a Pairing of Edges for Regular Polygons

被引:0
|
作者
C. Mendes de Jesus
Pantaleón D. Romero
机构
[1] Universidade Federal de Viçosa,Departamento de Matemática
[2] Universidad Cardenal Herrera-CEU,ESI International Chair@CEU
[3] CEU Universities,UCH, Departamento de Matemáticas, Física y Ciencias, Tecnológicas
关键词
Trivalent graphs; Closed surfaces; Pairing of edges; Surgeries; 14J80; 57M15; 57N05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define the concept of graph extension, embedded on a closed and orientable surface, associated to a pairing of edges of regular polygons in order to show that the K-regular pairing of edges graphs can be obtained by the canonical extension of graphs (graphs with a single vertex). We will present examples of K-regular graphs associated to surfaces with genus g≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\le 3$$\end{document}.
引用
收藏
页码:527 / 541
页数:14
相关论文
共 50 条
  • [1] Graphs and Closed Surfaces Associated with a Pairing of Edges for Regular Polygons
    de Jesus, C. Mendes
    Romero, Pantaleon D.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 527 - 541
  • [2] Surgeries of pairing of Edges associated to trivalent graphs
    M. B. Faria
    C. Mendes de Jesus
    P. D. R. Sanchez
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 1085 - 1095
  • [3] Surgeries of pairing of Edges associated to trivalent graphs
    Faria, M. B.
    Mendes de Jesus, C.
    Sanchez, P. D. R.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (04): : 1085 - 1095
  • [4] Hyperbolic regular polygons with notched edges
    Mann, C
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 34 (01) : 143 - 166
  • [5] Hyperbolic Regular Polygons with Notched Edges
    Casey Mann
    Discrete & Computational Geometry, 2005, 34 : 143 - 166
  • [6] HOMOGENEOUS GRAPHS AND REGULAR NEAR POLYGONS
    NOMURA, K
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (01) : 63 - 71
  • [7] Characterisation of graphs which underlie regular maps on closed surfaces
    Gardiner, A
    Nedela, R
    Sirán, J
    Skoviera, M
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 100 - 108
  • [8] Packing edges in random regular graphs
    Beis, M
    Duckworth, W
    Zito, M
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2002, 2002, 2420 : 118 - 130
  • [9] Periodic billiard trajectories in regular polygons and closed geodesics on regular polyhedra
    Fuchs, Dmitry
    GEOMETRIAE DEDICATA, 2014, 170 (01) : 319 - 333
  • [10] Periodic billiard trajectories in regular polygons and closed geodesics on regular polyhedra
    Dmitry Fuchs
    Geometriae Dedicata, 2014, 170 : 319 - 333