Synthesis of Mo2C/MoC/C nanocomposite for hydrogen evolution reaction

被引:0
|
作者
Sanjay Upadhyay
O. P. Pandey
机构
[1] School of Physics and Materials Science,
[2] Thapar Institute of Engineering & Technology,undefined
关键词
Molybdenum carbide; Composite; Carbon; Electrocatalyst; Hydrogen evolution reaction; Specific capacitance;
D O I
暂无
中图分类号
学科分类号
摘要
Our energy sources such as fossil fuels and coal are limited and cause air pollution. Hydrogen has been promoted as an alternative source of energy, which is renewable, cost-effective, and nature-friendly. Hydrogen evolution reaction (HER) can be used for the mass production of hydrogen at a very low cost. An active and efficient electrocatalyst is required to perform this reaction. To date, platinum (Pt) shows the highest efficiency; however, its high cost and low abundance hinder its large-scale uses. Molybdenum carbide has a similar electronic structure as that of platinum (Pt); hence, it shows high electrocatalytic activity towards HER. In this study, Mo2C/MoC/C composite has been synthesized using magnesium as a reducing agent. Carbon provides a highly conducting environment to Mo2C and MoC nanoparticles, and hence, the electrochemical performance is enhanced. The prepared sample shows a small Tafel slope of 125.5 mV/dec and long-term stability up to 5000 cyclic voltammetry cycles.
引用
收藏
页码:559 / 564
页数:5
相关论文
共 50 条
  • [1] Synthesis of Mo2C/MoC/C nanocomposite for hydrogen evolution reaction
    Upadhyay, Sanjay
    Pandey, O. P.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (02) : 559 - 564
  • [2] Synthesis of Mo2C/MoC and Mo2C/MoC/MoP heterostructures supported on N-doped carbon as electrocatalyst for high-efficient hydrogen evolution reaction
    Chang, He-Qiang
    Zhang, Guo-Hua
    Chou, Kuo-Chih
    ELECTROCHIMICA ACTA, 2021, 394
  • [3] Mo2C promoted electrocatalysis of the Pt/Mo2C (C) heterostructure for a superior hydrogen evolution reaction
    Ye, Yixiang
    Shi, Yuande
    Cai, Jiannan
    Xiao, Zhisheng
    Li, Zhongshui
    Lin, Shen
    DALTON TRANSACTIONS, 2023, 52 (12) : 3682 - 3689
  • [4] One-pot synthesis of pure phase molybdenum carbide (Mo2C and MoC) nanoparticles for hydrogen evolution reaction
    Upadhyay, Sanjay
    Pandey, O. P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (51) : 27114 - 27128
  • [5] Supported Heterostructured MoC/Mo2C Nanoribbons and Nanoflowers as Highly Active Electrocatalysts for Hydrogen Evolution Reaction
    Wei, Zhaoqian
    Hu, Xiao
    Ning, Shunlian
    Kang, Xiongwu
    Chen, Shaowei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (09) : 8458 - 8465
  • [6] Effect of Mo content on hydrogen evolution reaction activity of Mo2C/C electrocatalysts
    Nadar, Ashish
    Banerjee, Atindra Mohan
    Pai, Mrinal R.
    Antony, Rajini P.
    Patra, A. K.
    Sastry, P. U.
    Donthula, H.
    Tewari, R.
    Tripathi, A. K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (23) : 12691 - 12701
  • [7] Photonic Flash Synthesis of Mo2C/Graphene Electrocatalyst for the Hydrogen Evolution Reaction
    Reynard, Danick
    Nagar, Bhawna
    Girault, Hubert
    ACS CATALYSIS, 2021, 11 (09) : 5865 - 5872
  • [8] Mo2C/Reduced-Graphene-Oxide Nanocomposite: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction
    Wang, Sinong
    Liao, Lei
    Shi, Zhangping
    Xiao, Jingjing
    Gao, Qingsheng
    Zhang, Yahong
    Liu, Baohong
    Tang, Yi
    CHEMELECTROCHEM, 2016, 3 (12): : 2110 - 2115
  • [9] Pt/Mo2C heteronanosheets for superior hydrogen evolution reaction
    Zhao Liu
    Jing Li
    Shiji Xue
    Shunfa Zhou
    Konggang Qu
    Ying Li
    Weiwei Cai
    Journal of Energy Chemistry , 2020, (08) : 317 - 323
  • [10] Preparation of Mo2C–carbon nanomaterials for hydrogen evolution reaction
    Sathish Reddy
    Li Song
    Lixing Kang
    Quinliang Feng
    Ran Du
    Jin Zhang
    Liumin He
    Ramakrishna Seeram
    Carbon Letters, 2019, 29 : 225 - 232