A Convergence Analysis of the Inexact Simplified Jacobi–Davidson Algorithm for Polynomial Eigenvalue Problems

被引:0
|
作者
Tao Zhao
机构
[1] Chinese Academy of Sciences,Shenzhen Institutes of Advanced Technology
来源
关键词
Polynomial eigenvalue problem; Jacobi–Davidson algorithm; Convergence analysis; Inexact correction equation solver; Simple eigenvalue;
D O I
暂无
中图分类号
学科分类号
摘要
The simplified Jacobi–Davidson (JD) method is a variant of the JD method without subspace acceleration. If the correction equation is solved approximately, the inexact simplified JD method is obtained. In this paper, we present a new convergence analysis of the inexact simplified JD method. The analysis applies to polynomial eigenvalue problems with simple eigenpairs. We first establish a relationship between the solution of the correction equation and the residual of the approximate eigenpair. From this relationship, we find the difference of two adjacent approximate eigenvalues bounded in terms of the residual norm of the approximate eigenpair. Then we prove the convergence of the inexact simplified JD method in terms of the residual norm of the approximate eigenpair. Depending on how accurately we solve the correction equation, the convergence rate of the inexact simplified JD may take several different forms. Numerical experiments confirm the convergence analysis.
引用
收藏
页码:1207 / 1228
页数:21
相关论文
共 50 条
  • [1] A Convergence Analysis of the Inexact Simplified Jacobi–Davidson Algorithm for Polynomial Eigenvalue Problems
    Zhao, Tao
    Journal of Scientific Computing, 2018, 75 (03): : 1207 - 1228
  • [2] A Convergence Analysis of the Inexact Simplified Jacobi-Davidson Algorithm for Polynomial Eigenvalue Problems
    Zhao, Tao
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) : 1207 - 1228
  • [3] A Study on the Convergence Analysis of the Inexact Simplified Jacobi-Davidson Method
    Zhao, Jutao
    Guo, Pengfei
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [4] On local quadratic convergence of inexact simplified Jacobi-Davidson method
    Bai, Zhong-Zhi
    Miao, Cun-Qiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 : 215 - 241
  • [5] Preconditioned inexact Jacobi–Davidson method for large symmetric eigenvalue problems
    Hong-Yi Miao
    Li Wang
    Computational and Applied Mathematics, 2020, 39
  • [6] Preconditioned inexact Jacobi-Davidson method for large symmetric eigenvalue problems
    Miao, Hong-Yi
    Wang, Li
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [7] Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems
    Hochstenbach, Michiel E.
    Muhic, Andrej
    Plestenjak, Bor
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 251 - 263
  • [8] A parallel polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems
    Huang, Tsung-Ming
    Hwang, Feng-Nan
    Lai, Sheng-Hong
    Wang, Weichung
    Wei, Zih-Hao
    COMPUTERS & FLUIDS, 2011, 45 (01) : 207 - 214
  • [9] Global convergence of the restarted Lanczos and Jacobi–Davidson methods for symmetric eigenvalue problems
    Kensuke Aishima
    Numerische Mathematik, 2015, 131 : 405 - 423
  • [10] A parallel additive schwarz preconditioned jacobi-davidson algorithm for polynomial eigenvalue problems in quantum dot simulation
    Department of Mathematics, National Central University, Jhongli 320, Taiwan
    不详
    不详
    J. Comput. Phys., 8 (2932-2947):