The deformation of flat connections and affine manifolds

被引:0
|
作者
Mihail Cocos
机构
[1] Weber State University,
来源
Geometriae Dedicata | 2010年 / 144卷
关键词
Affine manifolds; Locally metric connections; Euler characteristic; 53C05; 53C15; 57R22;
D O I
暂无
中图分类号
学科分类号
摘要
Geodesically complete affine manifolds are quotients of the Euclidean space through a properly discontinuous action of a subgroup of affine Euclidean transformations. An equivalent definition is that the tangent bundle of such a manifold admits a flat, symmetric and complete connection. If the completeness assumption is dropped, the manifold is not necessarily obtained as the quotient of the Euclidean space through a properly discontinuous group of affine transformations. In fact the universal cover may no longer be the Euclidean space. The main result of this paper states that if a flat connection of a bundle can be properly deformed into a metric connection then its Euler class vanishes. This is a partial result toward an old question of Chern.
引用
收藏
页码:71 / 78
页数:7
相关论文
共 50 条
  • [1] The deformation of flat connections and affine manifolds
    Cocos, Mihail
    GEOMETRIAE DEDICATA, 2010, 144 (01) : 71 - 78
  • [2] Flat locally homogeneous affine connections with torsion on 2-dimensional manifolds
    Arias-Marco, Teresa
    NOTE DI MATEMATICA, 2008, 28 : 37 - 47
  • [3] HERMITIAN-EINSTEIN CONNECTIONS ON PRINCIPAL BUNDLES OVER FLAT AFFINE MANIFOLDS
    Biswas, Indranil
    Loftin, John
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (04)
  • [4] Flat affine manifolds and their transformations
    A. Medina
    O. Saldarriaga
    A. Villabon
    manuscripta mathematica, 2021, 166 : 469 - 487
  • [5] Flat bundles on affine manifolds
    Biswas I.
    Loftin J.
    Stemmler M.
    Arabian Journal of Mathematics, 2013, 2 (2) : 159 - 175
  • [6] Flat affine manifolds and their transformations
    Medina, A.
    Saldarriaga, O.
    Villabon, A.
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 469 - 487
  • [7] On Affine Immersions with Flat Connections
    Shugailo, O. O.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2012, 8 (01) : 90 - 105
  • [8] AFFINE SZABO CONNECTIONS ON SMOOTH MANIFOLDS
    Diallo, Abdoul Salam
    Massamba, Fortune
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2017, 58 (01): : 37 - 52
  • [9] Affine connections on homogeneous hypercomplex manifolds
    Barberis, ML
    JOURNAL OF GEOMETRY AND PHYSICS, 1999, 32 (01) : 1 - 13
  • [10] Complete flat affine and Lorentzian manifolds
    Charette, V
    Drumm, T
    Goldman, W
    Morrill, M
    GEOMETRIAE DEDICATA, 2003, 97 (01) : 187 - 198