A visual-numeric approach to clustering and anomaly detection for trajectory data

被引:0
|
作者
Dheeraj Kumar
James C. Bezdek
Sutharshan Rajasegarar
Christopher Leckie
Marimuthu Palaniswami
机构
[1] The University of Melbourne,Department of Electrical and Electronic Engineering
[2] The University of Melbourne,Department of Computing and Information Systems
[3] National ICT Australia,undefined
来源
The Visual Computer | 2017年 / 33卷
关键词
Trajectory clustering; Anomaly detection; ClusiVAT hierarchical clustering; MIT trajectory dataset;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a novel application of Visual Assessment of Tendency (VAT)-based hierarchical clustering algorithms (VAT, iVAT, and clusiVAT) for trajectory analysis. We introduce a new clustering based anomaly detection framework named iVAT+ and clusiVAT+ and use it for trajectory anomaly detection. This approach is based on partitioning the VAT-generated Minimum Spanning Tree based on an efficient thresholding scheme. The trajectories are classified as normal or anomalous based on the number of paths in the clusters. On synthetic datasets with fixed and variable numbers of clusters and anomalies, we achieve 98 % classification accuracy. Our two-stage clusiVAT method is applied to 26,039 trajectories of vehicles and pedestrians from a parking lot scene from the real life MIT trajectories dataset. The first stage clusters the trajectories ignoring directionality. The second stage divides the clusters obtained from the first stage by considering trajectory direction. We show that our novel two-stage clusiVAT approach can produce natural and informative trajectory clusters on this real life dataset while finding representative anomalies.
引用
收藏
页码:265 / 281
页数:16
相关论文
共 50 条
  • [1] A visual-numeric approach to clustering and anomaly detection for trajectory data
    Kumar, Dheeraj
    Bezdek, James C.
    Rajasegarar, Sutharshan
    Leckie, Christopher
    Palaniswami, Marimuthu
    VISUAL COMPUTER, 2017, 33 (03): : 265 - 281
  • [2] Clustering Approach for Trajectory Anomaly Detection
    Zhang, Zhengchao
    Li, Meng
    He, Fang
    Wang, Yinhai
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 113 - 124
  • [3] Trajectory Pattern Identification and Anomaly Detection of Pedestrian Flows Based on Visual Clustering
    Li, Li
    Leckie, Christopher
    INTELLIGENT INFORMATION PROCESSING VIII, 2016, 486 : 121 - 131
  • [4] Data-driven approach for anomaly detection of real GPS trajectory data
    Barucija, Emir
    Mujcinovic, Amra
    Muhovic, Berina
    Zunic, Emir
    Donko, Dzenana
    2019 XXVII INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT 2019), 2019,
  • [5] Similarity based vehicle trajectory clustering and anomaly detection
    Fu, ZY
    Hu, WM
    Tan, TI
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 2029 - 2032
  • [6] A novel ship trajectory clustering analysis and anomaly detection method based on AIS data
    Zhang, Chuang
    Liu, Songtao
    Guo, Muzhuang
    Liu, Yuanchang
    OCEAN ENGINEERING, 2023, 288
  • [7] Motion anomaly detection and trajectory analysis in visual surveillance
    Chebiyyam, Manaswi
    Reddy, Rohit Desam
    Dogra, Debi Prosad
    Bhaskar, Harish
    Mihaylova, Lyudmila
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (13) : 16223 - 16248
  • [8] Motion anomaly detection and trajectory analysis in visual surveillance
    Manaswi Chebiyyam
    Rohit Desam Reddy
    Debi Prosad Dogra
    Harish Bhaskar
    Lyudmila Mihaylova
    Multimedia Tools and Applications, 2018, 77 : 16223 - 16248
  • [9] Anomaly Detection in Trajectory Data with Normalizing Flows
    Dias, Madson L. D.
    Mattos, Cesar Lincoln C.
    da Silva, Ticiana L. C.
    de Macedo, Jose Antonio F.
    Silva, Wellington C. P.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [10] Visual-Numeric Endometriosis Scoring System (VNESS) for mapping surgical findings: A validation study
    Khazali, S.
    Mondelli, B.
    Fleischer, K.
    Bachi, A.
    Adamczyk, M.
    Lemos, N.
    Krentel, H.
    Vashisht, A.
    Abdalla, A.
    Mohazzab, A.
    Delanerolle, G.
    Possover, M.
    Padmehr, R.
    Shadjoo, K.
    Moawad, G.
    Lee, T.
    Saridogan, E.
    FACTS VIEWS AND VISION IN OBGYN, 2024, 16 (04): : 429 - 439