In this paper, we show the existence of nontrivial ground state solutions of fractional p-Kirchhoff problem m∫R2N|u(x)-u(y)|p|x-y|N+spdxdy(-Δ)psu=f(x,u)inΩ,u=0inRN\Ω,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} m\left( \int _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}\mathrm{d}x\mathrm{d}y\right) (-\Delta )_p^s u=f(x,u) ~&{}\text {in}~\Omega , \\ u=0 ~&{}\text {in}~{\mathbb {R}}^N{\setminus } \Omega , \end{array}\right. \end{aligned}$$\end{document}where (-Δ)ps\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(-\Delta )_p^s$$\end{document} is the fractional p-Laplacian operator with 0<s<1<p<∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0<s<1<p<\infty $$\end{document}, Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega $$\end{document} is a bounded domain in RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^N$$\end{document} with smooth boundary, m is continuous function and the nonlinearity f(x, u) has subcritical or critical exponential growth at ∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\infty $$\end{document}. For the purpose of obtaining our existence results, we used minimax techniques combined with the fractional Moser–Trudinger inequality.