Ground State Solutions for Fractional p-Kirchhoff Equation with Subcritical and Critical Exponential Growth

被引:0
|
作者
Ruichang Pei
Ying Zhang
Jihui Zhang
机构
[1] Tianshui Normal University,School of Mathematics and Statistics
[2] Nanjing Normal University,School of Mathematical Sciences
关键词
Fractional ; -Laplacian; Mountain pass theorem; Moser–Trudinger inequality; Subcritical and critical exponential growth; 34B27; 35J60; 35B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show the existence of nontrivial ground state solutions of fractional p-Kirchhoff problem m∫R2N|u(x)-u(y)|p|x-y|N+spdxdy(-Δ)psu=f(x,u)inΩ,u=0inRN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} m\left( \int _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}\mathrm{d}x\mathrm{d}y\right) (-\Delta )_p^s u=f(x,u) ~&{}\text {in}~\Omega , \\ u=0 ~&{}\text {in}~{\mathbb {R}}^N{\setminus } \Omega , \end{array}\right. \end{aligned}$$\end{document}where (-Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_p^s$$\end{document} is the fractional p-Laplacian operator with 0<s<1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1<p<\infty $$\end{document}, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded domain in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} with smooth boundary, m is continuous function and the nonlinearity f(x, u) has subcritical or critical exponential growth at ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}. For the purpose of obtaining our existence results, we used minimax techniques combined with the fractional Moser–Trudinger inequality.
引用
收藏
页码:355 / 377
页数:22
相关论文
共 50 条
  • [1] Ground State Solutions for Fractional p-Kirchhoff Equation with Subcritical and Critical Exponential Growth
    Pei, Ruichang
    Zhang, Ying
    Zhang, Jihui
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 355 - 377
  • [2] ON GROUND STATE OF FRACTIONAL P-KIRCHHOFF EQUATION INVOLVING SUBCRITICAL AND CRITICAL EXPONENTIAL GROWTH
    Pei, Ruichang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2653 - 2672
  • [3] GROUND STATE SOLUTIONS FOR FRACTIONAL p-KIRCHHOFF EQUATION
    Wang, Lixiong
    Chen, Haibo
    Yang, Liu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (61)
  • [4] Qualitative Analysis of Solutions for Fractional p-Kirchhoff Problems Involving Critical Exponential Growth
    He, Rui
    Liang, Sihua
    Van Nguyen, Thin
    Zhang, Binlin
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [5] Multiple solutions for a fractional p-Kirchhoff equation with critical growth and low order perturbations
    Chen, Zusheng
    Suo, Hongmin
    Lei, Jun
    AIMS MATHEMATICS, 2022, 7 (07): : 12897 - 12912
  • [6] Existence of Multiple Solutions for Fractional p-Kirchhoff Equation with Critical Sobolev Exponent
    Jiao, Caizhen
    Pei, Ruichang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [7] Existence of Multiple Solutions for Fractional p-Kirchhoff Equation with Critical Sobolev Exponent
    Caizhen Jiao
    Ruichang Pei
    Mediterranean Journal of Mathematics, 2023, 20
  • [8] Ground state solutions for planar periodic Kirchhoff type equation with critical exponential growth
    Wei, Jiuyang
    Tang, Xianhua
    Zhang, Limin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9322 - 9340
  • [9] ON THE CRITICAL p-KIRCHHOFF EQUATION
    Hasani, Erisa
    Perera, Kanishka
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (01) : 383 - 391
  • [10] GROUND STATE AND NODAL SOLUTIONS FOR FRACTIONAL KIRCHHOFF EQUATION WITH PURE CRITICAL GROWTH NONLINEARITY
    Liu, Chungen
    Zhang, Huabo
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (05): : 3281 - 3295