Competition of van der Waals and chemical forces on gold-sulfur surfaces and nanoparticles

被引:116
|
作者
Reimers, Jeffrey R. [1 ,2 ]
Ford, Michael J. [2 ]
Marcuccio, Sebastian M. [3 ,4 ]
Ulstrup, Jens [5 ]
Hush, Noel S. [6 ,7 ]
机构
[1] Shanghai Univ, Coll Sci, Int Ctr Quantum & Mol Struct, Shanghai 200444, Peoples R China
[2] Univ Technol Sydney, Sch Math & Phys Sci, Sydney, NSW 2007, Australia
[3] La Trobe Univ, Dept Chem & Phys, La Trobe Inst Mol Sci, Melbourne, Vic 3086, Australia
[4] Adv Mol Technol Pty Ltd, Unit 1, 7-11 Rocco Dr Scoresby, Scoresby, Vic 3179, Australia
[5] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark
[6] Univ Sydney, Sch Chem F11, Sydney, NSW 2006, Australia
[7] Univ Sydney, Sch Mol Biosci, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
SELF-ASSEMBLED MONOLAYERS; BRUST-SCHIFFRIN SYNTHESIS; ELECTRON CORRELATION METHODS; LONDON DISPERSION FORCES; ONE-DIMENSIONAL METALS; CHARGE-DENSITY WAVES; PEIERLS DISTORTIONS; COUPLED-CLUSTER; CO OXIDATION; HARTREE-FOCK;
D O I
10.1038/s41570-017-0017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemists generally believe that covalent and ionic bonds form much stronger links between atoms than the van der Waals force does. However, this is not always so. We present cases in which van der Waals dispersive forces introduce new competitive bonding possibilities rather than just modulating traditional bonding scenarios. Although the new possibilities could arise from any soft-soft chemical interaction, we focus on bonding between gold atoms and alkyl-or arylsulfur ligands, RS. Consideration of all the interactions at play in sulfur-protected gold surfaces and gold nanoparticles is necessary to understand their structural, chemical and spectroscopic properties. In turn, such knowledge opens pathways to new chemical entities and innovative nanotechnological devices. Such experimentation is complemented by modern theory, and presented here is a broad overview of computational methods appropriate to fields ranging from gas-phase chemistry to device physics and biochemistry.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Competition of van der Waals and chemical forces on gold-sulfur surfaces and nanoparticles (vol 1, 0017, 2017)
    Reimers, Jeffrey R.
    Ford, Michael J.
    Marcuccio, Sebastian M.
    Ulstrup, Jens
    Hush, Noel S.
    NATURE REVIEWS CHEMISTRY, 2017, 1 (04):
  • [2] Erratum: Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles
    Jeffrey R. Reimers
    Michael J. Ford
    Sebastian M. Marcuccio
    Jens Ulstrup
    Noel S. Hush
    Nature Reviews Chemistry, 1 (4)
  • [3] Nonadditivity of van der Waals forces on liquid surfaces
    Venkataram, Prashanth S.
    Whitton, Jeremy D.
    Rodriguez, Alejandro W.
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [4] Density functional for van der Waals forces at surfaces
    Hult, E
    Andersson, Y
    Lundqvist, BI
    Langreth, DC
    PHYSICAL REVIEW LETTERS, 1996, 77 (10) : 2029 - 2032
  • [5] Van der Waals Forces Between Plasmonic Nanoparticles
    Klimov, V. V.
    Lambrecht, A.
    PLASMONICS, 2009, 4 (01) : 31 - 36
  • [6] Van der Waals Forces Between Plasmonic Nanoparticles
    V. V. Klimov
    A. Lambrecht
    Plasmonics, 2009, 4 : 31 - 36
  • [7] The role of van der Waals forces in adhesion of micromachined surfaces
    Frank W. DelRio
    Maarten P. de Boer
    James A. Knapp
    E. David Reedy
    Peggy J. Clews
    Martin L. Dunn
    Nature Materials, 2005, 4 : 629 - 634
  • [8] The role of van der Waals forces in adhesion of micromachined surfaces
    Delrio, FW
    De Boer, MP
    Knapp, JA
    Reedy, ED
    Clews, PJ
    Dunn, ML
    NATURE MATERIALS, 2005, 4 (08) : 629 - 634
  • [9] Van der Waals forces
    Margenau, H
    REVIEWS OF MODERN PHYSICS, 1939, 11 (01) : 0001 - 0035
  • [10] Interaction of Oligonucleotides with Gold Nanoparticles: Factors Beyond Electrostatic and Van-Der Waals Forces
    Thakur, Shaila
    Cavallini, Nicola
    Ferrari, Debora
    Fabris, Laura
    ADVANCED MATERIALS INTERFACES, 2024,