The prescribed mean curvature equation in weakly regular domains

被引:0
|
作者
Gian Paolo Leonardi
Giorgio Saracco
机构
[1] Università degli Studi di Modena e Reggio Emilia,Dipartimento di Scienze Fisiche, Informatiche e Matematiche
[2] Universität Erlangen-Nürnberg,Department Mathematik
关键词
Prescribed mean curvature; Capillarity; Weak normal trace; Perimeter; Primary 49K20; 35J93; Secondary 49Q20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the characterization of existence and uniqueness up to vertical translations of solutions to the prescribed mean curvature equation, originally proved by Giusti in the smooth case, holds true for domains satisfying very mild regularity assumptions. Our results apply in particular to the non-parametric solutions of the capillary problem for perfectly wetting fluids in zero gravity. Among the essential tools used in the proofs, we mention a generalized Gauss–Green theorem based on the construction of the weak normal trace of a vector field with bounded divergence, in the spirit of classical results due to Anzellotti, and a weak Young’s law for (Λ,r0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Lambda ,r_{0})$$\end{document}-minimizers of the perimeter.
引用
收藏
相关论文
共 50 条