Parameterized Complexity of Geometric Covering Problems Having Conflicts

被引:0
|
作者
Aritra Banik
Fahad Panolan
Venkatesh Raman
Vibha Sahlot
Saket Saurabh
机构
[1] National Institute of Science Education and Research,Department of Informatics
[2] University of Bergen,undefined
[3] The Institute of Mathematical Sciences,undefined
[4] HBNI,undefined
[5] Indian Institute of Technology,undefined
来源
Algorithmica | 2020年 / 82卷
关键词
Conflict problems; Geometric Coverage; Parameterized Complexity; Matroids;
D O I
暂无
中图分类号
学科分类号
摘要
The input for the Geometric Coverage problem consists of a pair Σ=(P,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma =(P,\mathcal {R})$$\end{document}, where P is a set of points in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} and R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}$$\end{document} is a set of subsets of P defined by the intersection of P with some geometric objects in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}. Motivated by what are called choice problems in geometry, we consider a variation of the Geometric Coverage problem where there are conflicts on the covering objects that precludes some objects from being part of the solution if some others are in the solution. As our first contribution, we propose two natural models in which the conflict relations are given: (a) by a graph on the covering objects, and (b) by a representable matroid on the covering objects. Our main result is that as long as the conflict graph has bounded arboricity there is a parameterized reduction to the conflict-free version. As a consequence, we have the following results when the conflict graph has bounded arboricity. (1) If the Geometric Coverage problem is fixed parameter tractable (FPT), then so is the conflict free version. (2) If the Geometric Coverage problem admits a factor α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-approximation, then the conflict free version admits a factor α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-approximation algorithm running in FPT time. As a corollary to our main result we get a plethora of approximation algorithms that run in FPT time. Our other results include an FPT algorithm and a hardness result for conflict-free version of Covering Points by Intervals. The FPT algorithm is for the case when the conflicts are given by a representable matroid. We prove that conflict-free version of Covering Points by Intervals does not admit an FPT algorithm, unless FPT =W[1], for the family of conflict graphs for which the Independent Set problem is W[1]-hard.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 50 条
  • [1] Parameterized Complexity of Geometric Covering Problems Having Conflicts
    Banik, Aritra
    Panolan, Fahad
    Raman, Venkatesh
    Sahlot, Vibha
    Saurabh, Saket
    ALGORITHMICA, 2020, 82 (01) : 1 - 19
  • [2] Parameterized Complexity of Geometric Covering Problems Having Conflicts
    Banik, Aritra
    Panolan, Fahad
    Raman, Venkatesh
    Sahlot, Vibha
    Saurabh, Saket
    ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 61 - 72
  • [3] Parameterized complexity of geometric problems
    Giannopoulos, Panos
    Knauer, Christian
    Whitesides, Sue
    COMPUTER JOURNAL, 2008, 51 (03): : 372 - 384
  • [4] The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension
    Giannopoulos, Panos
    Knauer, Christian
    Rote, Guenter
    PARAMETERIZED AND EXACT COMPUTATION, 2009, 5917 : 198 - 209
  • [5] The computational complexity and approximability of a series of geometric covering problems
    Khachai, M. Yu.
    Poberii, M. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (03): : 247 - 260
  • [6] The computational complexity and approximability of a series of geometric covering problems
    M. Yu. Khachai
    M. I. Poberii
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 64 - 77
  • [7] The computational complexity and approximability of a series of geometric covering problems
    Khachai, M. Yu.
    Poberii, M. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 : 64 - 77
  • [8] The Parameterized Complexity of Geometric Graph Isomorphism
    V. Arvind
    Gaurav Rattan
    Algorithmica, 2016, 75 : 258 - 276
  • [9] The Parameterized Complexity of Geometric Graph Isomorphism
    Arvind, Vikraman
    Rattan, Gaurav
    PARAMETERIZED AND EXACT COMPUTATION, IPEC 2014, 2014, 8894 : 51 - 62
  • [10] The Parameterized Complexity of Geometric Graph Isomorphism
    Arvind, V.
    Rattan, Gaurav
    ALGORITHMICA, 2016, 75 (02) : 258 - 276