Electron Transport in Cryocrystals

被引:0
|
作者
V. G. Storchak
D. G. Eshchenko
J. H. Brewer
S. P. Cottrell
S. F. J. Cox
E. Karlsson
R. W. Wappling
机构
[1] Russian Science Centre “Kurchatov Institute”,Canadian Institute for Advanced Research and Department of Physics
[2] Institute for Nuclear Research,Department of Physics
[3] University of British Columbia,undefined
[4] Rutherford Appleton Laboratory,undefined
[5] Chilton,undefined
[6] Uppsala University,undefined
来源
关键词
Electron Transport; Spin Relaxation; Relaxation Technique; Excess Electron; Recent Experimental Study;
D O I
暂无
中图分类号
学科分类号
摘要
We review our recent experimental studies of the excess electron transport in cryocrystals and cryoliquids. We use a muon spin relaxation technique to explore the phenomenon of delayed muonium formation: excess electrons liberated in the μ+ ionization track converge upon the positive muons and form Mu (μ+e−) atoms in which the μ+ polarization is partially lost. The spatial distribution of such electrons with respect to the moon is shown to be highly anisotropic: the μ+ thermalizes well “downstream” from the center of the electron distribution. Measurements in electric fields up to 30 kV/cm allow one to estimate the characteristic muon-electron distance in different insulators: the results range from 10−6 cm to 10−4 cm. This circumstance makes the basis of a recently developed new technique for electron transport studies on microscopic scale: electron mobility can be extracted when both the characteristic muon-electron distance and characteristic time for muonium atom formation are determined. The microscopic length scale enables the electron to sometimes spend its entire free lifetime in a state which may not be detected by conventional macroscopic techniques. The muonium formation process in condensed matter is shown to depend critically upon whether the excess electron forms a polaron or remains in a delocalized state. Different mechanisms of electron transport in insulators are discussed.
引用
收藏
页码:527 / 535
页数:8
相关论文
共 50 条
  • [1] Electron transport in cryocrystals
    Storchak, VG
    Eshchenko, DG
    Brewer, JH
    Cottrell, SP
    Cox, SFJ
    Karlsson, E
    Wappling, RW
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2001, 122 (3-4) : 527 - 535
  • [2] Formation and trapping of electron excitations in neon cryocrystals
    Fugol, IY
    Belov, AG
    Tarasova, EI
    Yurtaeva, EM
    LOW TEMPERATURE PHYSICS, 1999, 25 (8-9) : 713 - 723
  • [3] The surface energy of cryocrystals
    Magomedov, MN
    TECHNICAL PHYSICS LETTERS, 2005, 31 (12) : 1039 - 1042
  • [4] EXCITONS IN ARGON CRYOCRYSTALS
    FUGOL, IY
    SAVCHENKO, EV
    RYBALKO, YI
    OGURTSOV, AN
    FIZIKA NIZKIKH TEMPERATUR, 1986, 12 (07): : 773 - 776
  • [5] The surface energy of cryocrystals
    M. N. Magomedov
    Technical Physics Letters, 2005, 31 : 1039 - 1042
  • [6] MUONS AND MUONIUM IN CRYOCRYSTALS
    MORRIS, GD
    BREWER, JH
    STORCHAK, V
    SENBA, M
    ARSENEAU, DJ
    HYPERFINE INTERACTIONS, 1994, 87 (1-4): : 1023 - 1028
  • [7] LUMINESCENCE OF POLARITONS IN XENON CRYOCRYSTALS
    FUGOL, IY
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1982, 46 (02): : 349 - 354
  • [8] MUONIUM QUANTUM DIFFUSION IN CRYOCRYSTALS
    STORCHAK, VG
    BREWER, JH
    MORRIS, GD
    HYPERFINE INTERACTIONS, 1994, 85 (1-4): : 31 - 43
  • [9] THE RYDBERG EXCITATIONS IN NEON CRYOCRYSTALS
    BELOV, AG
    FUGOL, IY
    YURTAEVA, EM
    FIZIKA NIZKIKH TEMPERATUR, 1992, 18 (02): : 177 - 184
  • [10] Progress in Cryocrystals at Megabar Pressures
    Russell J. Hemley
    Ho-kwang Mao
    Journal of Low Temperature Physics, 2001, 122 : 331 - 344