Projective p-adic representations of the K-rational geometric fundamental group

被引:0
|
作者
G. Frey
E. Kani
机构
[1] Institut für Experimentelle Mathematik,
[2] Universität Essen,undefined
[3] Ellernstr. 29,undefined
[4] D-45326 Essen,undefined
[5] frey@exp-math.uni-essen.de,undefined
[6] Department of Mathematics and Statistics,undefined
[7] Queen's University,undefined
[8] Kingston,undefined
[9] Ontario K7L 3N6,undefined
[10] Canada,undefined
[11] kani@mast.queensu.ca,undefined
来源
Archiv der Mathematik | 2001年 / 77卷
关键词
Modulus Space; Fundamental Group; Galois Group; Positive Characteristic; Abelian Variety;
D O I
暂无
中图分类号
学科分类号
摘要
If C/K is a curve over a finitely generated field K with a K-rational point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P \in C(K)$\end{document}, then the K-rational geometric fundamental group of C/K is the Galois group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\pi_1(C,P)=\rm{Gal}(F_{nr,P}/F)$\end{document} of the maximal unramified extension Fnr,P of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $F=\kappa(C)$\end{document} in which P splits completely.¶In view of the Fontaine-Mazur Conjecture, it is of interest to know examples of curves for which this group is infinite, and this is implied by the existence of projective p-adic representations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tilde{\rho}_V:\pi_1(C,P)\rightarrow {\rm PGL}(V)$\end{document} with infinite image.¶In this paper we first derive some necessary and sufficient conditions that the projective Galois representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tilde{\rho}_V:G_F\rightarrow {\rm PGL}(V)$\end{document} attached to a p-adic submodule \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $V\subset T_p(A)$\end{document} of the Tate-module of an abelian variety A/F factors over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\pi_1(C,P)$\end{document}. We then apply this (in positive characteristic) to present two constructions for such representations: one by properties of moduli spaces and the other by cyclic coverings.
引用
收藏
页码:32 / 46
页数:14
相关论文
共 50 条