Estimation of extreme conditional quantiles under a general tail-first-order condition

被引:0
|
作者
Laurent Gardes
Armelle Guillou
Claire Roman
机构
[1] Université de Strasbourg & CNRS,Institut de Recherche Mathématique Avancée, UMR 7501
关键词
Extreme quantile; Local estimation; Asymptotic normality;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the estimation of an extreme conditional quantile. In a first part, we propose a new tail condition in order to establish the asymptotic distribution of an extreme conditional quantile estimator. Next, a general class of estimators is introduced, which encompasses, among others, kernel or nearest neighbors types of estimators. A unified theorem of the asymptotic normality for this general class of estimators is provided under the new tail condition and illustrated on the different well-known examples. A comparison between different estimators belonging to this class is provided on a small simulation study and illustrated on a real dataset on earthquake magnitudes.
引用
收藏
页码:915 / 943
页数:28
相关论文
共 50 条
  • [1] Estimation of extreme conditional quantiles under a general tail-first-order condition
    Gardes, Laurent
    Guillou, Armelle
    Roman, Claire
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (04) : 915 - 943
  • [2] Nonparametric estimation of the conditional tail index and extreme quantiles under random censoring
    Ndao, Pathe
    Diop, Aliou
    Dupuy, Jean-Francois
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 79 : 63 - 79
  • [3] Nonparametric estimation of extreme conditional quantiles
    Beirlant, J
    De Wet, T
    Goegebeur, Y
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 567 - 580
  • [4] Functional nonparametric estimation of conditional extreme quantiles
    Gardes, Laurent
    Girard, Stephane
    Lekina, Alexandre
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (02) : 419 - 433
  • [5] Estimation of extreme conditional quantiles through an extrapolation of intermediate regression quantiles
    He, Fengyang
    Cheng, Yebin
    Tong, Tiejun
    STATISTICS & PROBABILITY LETTERS, 2016, 113 : 30 - 37
  • [7] Estimation of Extreme Conditional Quantiles Through Power Transformation
    Wang, Huixia Judy
    Li, Deyuan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 1062 - 1074
  • [8] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    Feng Yang HE
    Ye Bin CHENG
    Tie Jun TONG
    Acta Mathematica Sinica, 2018, 34 (10) : 1589 - 1610
  • [9] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    He, Feng Yang
    Cheng, Ye Bin
    Tong, Tie Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (10) : 1589 - 1610
  • [10] ESTIMATION FOR EXTREME CONDITIONAL QUANTILES OF FUNCTIONAL QUANTILE REGRESSION
    Zhu, Hanbing
    Zhang, Riquan
    Li, Yehua
    Yao, Weixin
    STATISTICA SINICA, 2022, 32 : 1767 - 1787