Randomized Kaczmarz with averaging

被引:0
|
作者
Jacob D. Moorman
Thomas K. Tu
Denali Molitor
Deanna Needell
机构
[1] University of California,Department of Mathematics
[2] Los Angeles,undefined
来源
BIT Numerical Mathematics | 2021年 / 61卷
关键词
Randomized Kaczmarz; Algebraic reconstruction technique; Parallel methods; Inconsistent linear systems; 15A06; 15B52; 65F10; 65F20; 65Y20; 68Q25; 68W10; 68W20; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
The randomized Kaczmarz (RK) method is an iterative method for approximating the least-squares solution of large linear systems of equations. The standard RK method uses sequential updates, making parallel computation difficult. Here, we study a parallel version of RK where a weighted average of independent updates is used. We analyze the convergence of RK with averaging and demonstrate its performance empirically. We show that as the number of threads increases, the rate of convergence improves and the convergence horizon for inconsistent systems decreases.
引用
收藏
页码:337 / 359
页数:22
相关论文
共 50 条
  • [1] Randomized Kaczmarz with averaging
    Moorman, Jacob D.
    Tu, Thomas K.
    Molitor, Denali
    Needell, Deanna
    BIT NUMERICAL MATHEMATICS, 2021, 61 (01) : 337 - 359
  • [2] Faster randomized block sparse Kaczmarz by averaging
    Tondji, Lionel
    Lorenz, Dirk A.
    NUMERICAL ALGORITHMS, 2023, 93 (04) : 1417 - 1451
  • [3] Randomized Kaczmarz algorithm with averaging and block projection
    Zeyi Zhang
    Dong Shen
    BIT Numerical Mathematics, 2024, 64
  • [4] Faster randomized block sparse Kaczmarz by averaging
    Lionel Tondji
    Dirk A. Lorenz
    Numerical Algorithms, 2023, 93 : 1417 - 1451
  • [5] Randomized Kaczmarz algorithm with averaging and block projection
    Zhang, Zeyi
    Shen, Dong
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [6] On the Randomized Kaczmarz Algorithm
    Dai, Liang
    Soltanalian, Mojtaba
    Pelckmans, Kristiaan
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (03) : 330 - 333
  • [7] Comments on the Randomized Kaczmarz Method
    Strohmer, Thomas
    Vershynin, Roman
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (04) : 437 - 440
  • [8] Comments on the Randomized Kaczmarz Method
    Thomas Strohmer
    Roman Vershynin
    Journal of Fourier Analysis and Applications, 2009, 15 : 437 - 440
  • [9] Selectable Set Randomized Kaczmarz
    Yaniv, Yotam
    Moorman, Jacob D.
    Swartworth, William
    Tu, Thomas
    Landis, Daji
    Needell, Deanna
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (01)
  • [10] A Sparse Randomized Kaczmarz Algorithm
    Mansour, Hassan
    Yilmaz, Ozgur
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 621 - 621