Solubility of niobium in the system CaCO3–CaF2–NaNbO3 at 0.1 GPa pressure: implications for the crystallization of pyrochlore from carbonatite magma

被引:0
|
作者
Roger H. Mitchell
Bruce A. Kjarsgaard
机构
[1] Lakehead University,Department of Geology
[2] Geological Survey of Canada,undefined
来源
Contributions to Mineralogy and Petrology | 2004年 / 148卷
关键词
CaCO3; CaF2; Nb2O5; Phase Assemblage; NaNbO3;
D O I
暂无
中图分类号
学科分类号
摘要
Experimental data are presented for the solubility of NaNbO3 in the ternary system CaCO3–CaF2–NaNbO3 (or calcite–fluorite–lueshite) over the temperature range 500–1,000°C at 0.1 GPa pressure. Liquidus to solidus phase relationships are given for the pseudo-binary join ([CaCO3]60[CaF2]40)100-x–(NaNbO3)x (0<x<60 wt%). These data show that the maximum solubility of NaNbO3 in these liquids is about 17 wt% (or 13.8 wt% Nb2O5) at approximately 930°C, and is represented by the appearance of pyrochlore as the primary liquidus phase. The sub-liquidus assemblages with decreasing temperature for NaNbO3 contents of 20–50 wt% are: pyrochlore + liquid; pyrochlore + CaF2 + liquid; pyrochlore + CaF2 + CaCO3 + liquid. The solidus assemblage is pyrochlore + CaF2 + CaCO3 at temperatures of approximately 700°C (20 wt% NaNbO3) and 600°C (40 wt% NaNbO3). NaNbO3 is present only in sub-solidus assemblages. These data show that in this fluorine-bearing anhydrous system pyrochlore is the principal Nb-hosting supra-solidus phase, in contrast to fluorine-free hydrous melts from which perovskite-structured compounds crystallize. The crystallization of pyrochlore and/or perovskite-structured compounds from haplocarbonatite liquids is thus considered to be dependent upon the F/OH ratio of the melt.
引用
收藏
页码:281 / 287
页数:6
相关论文
共 19 条
  • [1] Solubility of niobium in the system CaCO3-CoCaF2-CoNaNbO3 at 0.1 GPa pressure:: implications for the crystallization of pyrochlore from carbonatite magma
    Mitchell, RH
    Kjarsgaard, BA
    CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2004, 148 (03) : 281 - 287
  • [2] Solubility of niobium in the system CaCO3–Ca(OH)2–NaNbO3 at 0.1 GPa pressure
    Roger H. Mitchell
    Bruce A. Kjarsgaard
    Contributions to Mineralogy and Petrology, 2002, 144 : 93 - 97
  • [3] SOLUBILITY OF Ta IN THE SYSTEM CaCO3 - Ca(OH)2 - NaTaO3 - NaNbO3 ± F AT 0.1 GPa: IMPLICATIONS FOR THE CRYSTALLIZATION OF PYROCHLORE-GROUP MINERALS IN CARBONATITES
    Kjarsgaard, Bruce A.
    Mitchell, Roger H.
    CANADIAN MINERALOGIST, 2008, 46 (981-990): : 981 - 990
  • [4] Solubility of niobium in the system CaCO3-Ca(OH)2-NaNbO3 at 0.1 GPa pressure
    Mitchell, RH
    Kjarsgaard, BA
    CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2002, 144 (01) : 93 - 97
  • [5] EFFECT OF PRESSURE ON SOLUBILITY OF CACO3, CAF2, AND SRSO4 IN WATER
    MACDONALD, RW
    NORTH, NA
    CANADIAN JOURNAL OF CHEMISTRY, 1974, 52 (18) : 3181 - 3186
  • [6] ON THE FORMATION OF CAF2 FROM GASEOUS HF AND SOLID CACO3
    KEMNITZ, E
    HASS, D
    RONNEBECK, M
    ZEITSCHRIFT FUR CHEMIE, 1983, 23 (06): : 232 - 233
  • [7] Phase relations in the system Na2CO3-CaCO3 -MgCO3 at 3 GPa with implications for carbonatite genesis and evolution
    Podborodnikov, Ivan, V
    Shatskiy, Anton
    Arefiev, Anton, V
    Litasov, Konstantin D.
    LITHOS, 2019, 330 : 74 - 89
  • [8] The System K2CO3-CaCO3-MgCO3 at 3 GPa: Implications for Carbonatite Melt Compositions in the Shallow Continental Lithosphere
    Arefiev, Anton, V
    Shatskiy, Anton
    Podborodnikov, Ivan, V
    Bekhtenova, Altyna
    Litasov, Konstantin D.
    MINERALS, 2019, 9 (05):
  • [9] The system K2CO3–CaCO3 at 3 GPa: link between phase relations and variety of K–Ca double carbonates at ≤ 0.1 and 6 GPa
    Anton V. Arefiev
    Anton Shatskiy
    Ivan V. Podborodnikov
    Sergey V. Rashchenko
    Artem D. Chanyshev
    Konstantin D. Litasov
    Physics and Chemistry of Minerals, 2019, 46 : 229 - 244
  • [10] Experimental subsolidus phase relations in the system CaCO3–CaMg(CO3)2 up to 6.5 GPa and implications for subducted marbles
    Jörg Hermann
    Ulrike Troitzsch
    Dean Scott
    Contributions to Mineralogy and Petrology, 2016, 171