Moving mesh finite difference solution of non-equilibrium radiation diffusion equations

被引:0
|
作者
Xiaobo Yang
Weizhang Huang
Jianxian Qiu
机构
[1] China University of Mining Technology,Department of Mathematics, College of Science
[2] University of Kansas,Department of Mathematics
[3] Xiamen University,School of Mathematical Sciences
来源
Numerical Algorithms | 2019年 / 82卷
关键词
Moving mesh method; Non-equilibrium radiation diffusion; Predictor-corrector; Positivity; Cutoff; Two-level mesh movement; 65M06; 65M50;
D O I
暂无
中图分类号
学科分类号
摘要
A moving mesh finite difference method based on the moving mesh partial differential equation is proposed for the numerical solution of the 2T model for multi-material, non-equilibrium radiation diffusion equations. The model involves nonlinear diffusion coefficients and its solutions stay positive for all time when they are positive initially. Nonlinear diffusion and preservation of solution positivity pose challenges in the numerical solution of the model. A coefficient-freezing predictor-corrector method is used for nonlinear diffusion while a cutoff strategy with a positive threshold is used to keep the solutions positive. Furthermore, a two-level moving mesh strategy and a sparse matrix solver are used to improve the efficiency of the computation. Numerical results for a selection of examples of multi-material non-equilibrium radiation diffusion show that the method is capable of capturing the profiles and local structures of Marshak waves with adequate mesh concentration. The obtained numerical solutions are in good agreement with those in the existing literature. Comparison studies are also made between uniform and adaptive moving meshes and between one-level and two-level moving meshes.
引用
收藏
页码:1409 / 1440
页数:31
相关论文
共 50 条
  • [1] Moving mesh finite difference solution of non-equilibrium radiation diffusion equations
    Yang, Xiaobo
    Huang, Weizhang
    Qiu, Jianxian
    NUMERICAL ALGORITHMS, 2019, 82 (04) : 1409 - 1440
  • [2] A moving mesh finite difference method for equilibrium radiation diffusion equations
    Yang, Xiaobo
    Huang, Weizhang
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 661 - 677
  • [3] A Moving Mesh Finite Difference Method for Non-Monotone Solutions of Non-Equilibrium Equations in Porous Media
    Zhang, Hong
    Zegeling, Paul Andries
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (04) : 935 - 964
  • [4] Monotone finite point method for non-equilibrium radiation diffusion equations
    Zhongyi Huang
    Ye Li
    BIT Numerical Mathematics, 2016, 56 : 659 - 679
  • [5] Monotone finite point method for non-equilibrium radiation diffusion equations
    Huang, Zhongyi
    Li, Ye
    BIT NUMERICAL MATHEMATICS, 2016, 56 (02) : 659 - 679
  • [6] Discontinuous finite element method for 1D non-equilibrium radiation diffusion equations
    Zhang, Rongpei
    Yu, Xijun
    Cui, Xia
    Feng, Tao
    Jisuan Wuli/Chinese Journal of Computational Physics, 2012, 29 (05): : 641 - 646
  • [7] An efficient nonlinear solution method for non-equilibrium radiation diffusion
    Knoll, DA
    Rider, WJ
    Olson, GL
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1999, 63 (01): : 15 - 29
  • [8] Efficient nonlinear solution method for non-equilibrium radiation diffusion
    Knoll, D.A.
    Rider, W.J.
    Olson, G.L.
    Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63 (01): : 15 - 29
  • [9] Analytical benchmark for non-equilibrium radiation diffusion in finite size systems
    Ghosh, Karabi
    ANNALS OF NUCLEAR ENERGY, 2014, 63 : 59 - 68
  • [10] Adaptive Implicit Non-Equilibrium Radiation Diffusion
    Philip, B.
    Wang, Z.
    Berrill, M.
    Rodriguez, M.
    Pernice, M.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2012, 2013, 474 : 271 - 276