Enhanced Coercivity for Pure Advection and Advection–Diffusion Problems

被引:0
|
作者
Claudio Canuto
机构
[1] Politecnico di Torino,Dipartimento di Matematica
来源
关键词
Advection–diffusion problems; coercivity and continuity bounds; stabilization; Fourier methods; multilevel bases; 65N30; 65N12; 35B25; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
We present a common framework in which to set advection problems or advection–diffusion problems in the advection dominated regime, prior to any discretization. It allows one to obtain, in an easy way via enhanced coercivity, a bound on the advection derivative of the solution in a fractional norm of order −1/2. The same bound trivially applies to any Galerkin approximate solution, yielding a stability estimate which is uniform with respect to the diffusion parameter. The proposed formulation is discussed within Fourier methods and multilevel (wavelet) methods, for both steady and unsteady problems.
引用
收藏
页码:223 / 244
页数:21
相关论文
共 50 条
  • [1] Enhanced coercivity for pure advection and advection-diffusion problems
    Canuto, Claudio
    JOURNAL OF SCIENTIFIC COMPUTING, 2006, 28 (2-3) : 223 - 244
  • [2] Advection Diffusion Problems with Pure Advection Approximation in Subregions
    Université de Genève, 2-4 rue du Lièvre, CP 64, Genève, CH-1211, Switzerland
    不详
    不详
    Lect. Notes Comput. Sci. Eng., 2007, (239-246):
  • [3] Parallelisation of algorithms for advection diffusion problems
    Vollebregt, E.A.H.
    1600, Elsevier Science B.V., Amsterdam, Netherlands (03): : 4 - 5
  • [5] Residual distribution schemes for advection and advection-diffusion problems on quadrilateral cells
    De Palma, P.
    Pascazio, G.
    Rubino, D. T.
    Napolitano, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) : 159 - 199
  • [6] A hybrid nonoverlapping domain decomposition scheme for advection dominated advection–diffusion problems
    Magne S. Espedal
    Xue‐Cheng Tai
    Ningning Yan
    Numerical Algorithms, 1998, 18 : 321 - 336
  • [7] A hybrid nonoverlapping domain decomposition scheme for advection dominated advection-diffusion problems
    Espedal, MS
    Tai, XC
    Yan, NN
    NUMERICAL ALGORITHMS, 1998, 18 (3-4) : 321 - 336
  • [8] Variational principles for advection-diffusion problems
    Auchmuty, Giles
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1882 - 1886
  • [9] CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS
    BREZZI, F
    RUSSO, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (04): : 571 - 587
  • [10] A Meshless Method for Advection-Diffusion Problems
    Xue, Dangqin
    Zhao, Huanping
    Zhang, Jiaxi
    Hou, Shulin
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 1594 - +