Analysis of news sentiments using natural language processing and deep learning

被引:0
|
作者
Mattia Vicari
Mauro Gaspari
机构
[1] University of Bologna,Department of Computer Science and Engineering
[2] University of Bologna,undefined
来源
AI & SOCIETY | 2021年 / 36卷
关键词
Deep learning; Machine learning; Natural language processing; Trading signals; Trading; Sentiment analysis; NLP; Trading strategies;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates if and to what point it is possible to trade on news sentiment and if deep learning (DL), given the current hype on the topic, would be a good tool to do so. DL is built explicitly for dealing with significant amounts of data and performing complex tasks where automatic learning is a necessity. Thanks to its promise to detect complex patterns in a dataset, it may be appealing to those investors that are looking to improve their trading process. Moreover, DL and specifically LSTM seem a good pick from a linguistic perspective too, given its ability to “remember” previous words in a sentence. After having explained how DL models are built, we will use this tool for forecasting the market sentiment using news headlines. The prediction is based on the Dow Jones industrial average by analyzing 25 daily news headlines available between 2008 and 2016, which will then be extended up to 2020. The result will be the indicator used for developing an algorithmic trading strategy. The analysis will be performed on two specific cases that will be pursued over five time-steps and the testing will be developed in real-world scenarios.
引用
收藏
页码:931 / 937
页数:6
相关论文
共 50 条
  • [1] Analysis of news sentiments using natural language processing and deep learning
    Vicari, Mattia
    Gaspari, Mauro
    AI & SOCIETY, 2021, 36 (03) : 931 - 937
  • [2] Fake News Detection Using Deep Learning and Natural Language Processing
    Matheven, Anand
    Venkata, Burra
    Kumar, Durga
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 11 - 14
  • [3] Fake News Detection Using Feature Extraction, Natural Language Processing, Curriculum Learning, and Deep Learning
    Madani, Mirmorsal
    Motameni, Homayun
    Roshani, Reza
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2024, 23 (03) : 1063 - 1098
  • [4] Natural Language Processing with Optimal Deep Learning Based Fake News Classification
    Althubiti, Sara A.
    Alenezi, Fayadh
    Mansour, Romany F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3529 - 3544
  • [5] Deep learning of the natural language processing
    Allauzen, Alexandre
    Schuetze, Hinrich
    TRAITEMENT AUTOMATIQUE DES LANGUES, 2018, 59 (02): : 7 - 14
  • [6] Deep Learning in Natural Language Processing
    Feng, Haoda
    Shi, Feng
    NATURAL LANGUAGE ENGINEERING, 2021, 27 (03) : 373 - 375
  • [7] Deep Learning for Natural Language Processing and Language Modelling
    Klosowski, Piotr
    2018 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2018, : 223 - 228
  • [8] Feature Extraction and Analysis of Natural Language Processing for Deep Learning English Language
    Wang, Dongyang
    Su, Junli
    Yu, Hongbin
    IEEE ACCESS, 2020, 8 (08): : 46335 - 46345
  • [9] Fake news detection using deep learning integrating feature extraction, natural language processing, and statistical descriptors
    Madani, Mirmorsal
    Motameni, Homayun
    Mohamadi, Hosein
    SECURITY AND PRIVACY, 2022, 5 (06)
  • [10] Detection of Fake News Using Machine Learning and Natural Language Processing Algorithms
    Prachi, Noshin Nirvana
    Habibullah, Md.
    Rafi, Md. Emanul Haque
    Alam, Evan
    Khan, Riasat
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2022, 13 (06) : 652 - 661