Numerical Discretization of Coupling Conditions by High-Order Schemes

被引:0
|
作者
Mapundi K. Banda
Axel-Stefan Häck
Michael Herty
机构
[1] University of Pretoria,
[2] RWTH Aachen University,undefined
来源
关键词
Numerical methods; Higher-order coupling; Networks of fluid dynamics; 35R02; 35Q35; 35F30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider numerical schemes for 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} hyperbolic conservation laws on graphs. The hyperbolic equations are given on arcs which are one-dimensional in space and are coupled at a single point, the node, by a nonlinear coupling condition. We develop high-order finite volume discretizations for the coupled problem. The reconstruction of the fluxes at the node is obtained using derivatives of the parameterized algebraic conditions imposed at the nodal points in the network. Numerical results illustrate the expected theoretical behavior.
引用
收藏
页码:122 / 145
页数:23
相关论文
共 50 条