Utility maximization in incomplete markets with random endowment

被引:31
|
作者
Jakša Cvitanić
Walter Schachermayer
Hui Wang
机构
[1] Department of Mathematics,
[2] USC,undefined
[3] 1042 W 36 Pl,undefined
[4] DRB 155,undefined
[5] Los Angeles,undefined
[6] CA 90089-1113,undefined
[7] USA (e-mail: cvitanic@math.usc.edu) ,undefined
[8] Department of Statistics,undefined
[9] Probability Theory and Actuarial Mathematics,undefined
[10] Vienna University of Technology,undefined
[11] Wiedner Hauptstrasse 8-10,undefined
[12] A-1040 Wien,undefined
[13] Austria (e-mail: wschach@fam.tuwien.ac.at) ,undefined
[14] Department of Statistics,undefined
[15] Columbia University,undefined
[16] New York,undefined
[17] NY 10027,undefined
[18] USA (e-mail: wanghui@stat.columbia.edu) ,undefined
关键词
Key words: Utility maximization, incomplete markets, random endowment, duality; JEL Classification: G11, G12; C61; Mathematics Subject Classification (1991): Primary 90A09, 90A10; secondary 90C26;
D O I
10.1007/PL00013534
中图分类号
学科分类号
摘要
This paper solves the following problem of mathematical finance: to find a solution to the problem of maximizing utility from terminal wealth of an agent with a random endowment process, in the general, semimartingale model for incomplete markets, and to characterize it via the associated dual problem. We show that this is possible if the dual problem and its domain are carefully defined. More precisely, we show that the optimal terminal wealth is equal to the inverse of marginal utility evaluated at the solution to the dual problem, which is in the form of the regular part of an element of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $({\bf L}^\infty)^*$\end{document} (the dual space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\bf L}^\infty$\end{document}).
引用
收藏
页码:259 / 272
页数:13
相关论文
共 50 条
  • [1] Erratum to: Utility maximization in incomplete markets with random endowment
    Jaksa Cvitanić
    Walter Schachermayer
    Hui Wang
    Finance and Stochastics, 2017, 21 : 867 - 872
  • [2] STABILITY OF THE UTILITY MAXIMIZATION PROBLEM WITH RANDOM ENDOWMENT IN INCOMPLETE MARKETS
    Kardaras, Constantinos
    Zitkovic, Gordan
    MATHEMATICAL FINANCE, 2011, 21 (02) : 313 - 333
  • [3] Utility maximization in incomplete markets with random endowment (vol 5, pg 259, 2001)
    Cvitanic, Jaksa
    Schachermayer, Walter
    Wang, Hui
    FINANCE AND STOCHASTICS, 2017, 21 (03) : 867 - 872
  • [4] Utility maximization in incomplete markets
    Hu, Y
    Imkeller, P
    Müller, M
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (03): : 1691 - 1712
  • [5] Robust utility maximization with unbounded random endowment
    Owari, Keita
    ADVANCES IN MATHEMATICAL ECONOMICS, VOL 14, 2011, 14 : 147 - 181
  • [6] A Note on Utility Maximization with Unbounded Random Endowment
    Owari K.
    Asia-Pacific Financial Markets, 2011, 18 (1) : 89 - 103
  • [7] Utility maximization with a stochastic clock and an unbounded random endowment
    Zitkovic, G
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (1B): : 748 - 777
  • [8] On the dual problem of utility maximization in incomplete markets
    Gu, Lingqi
    Lin, Yiqing
    Yang, Junjian
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (04) : 1019 - 1035
  • [9] A utility maximization approach to hedging in incomplete markets
    Jan Kallsen
    Mathematical Methods of Operations Research, 1999, 50 : 321 - 338
  • [10] Utility maximization in incomplete markets for unbounded processes
    Biagini, S
    Frittelli, M
    FINANCE AND STOCHASTICS, 2005, 9 (04) : 493 - 517