Compact conformally stationary Lorentzian manifolds with no causal conjugate points

被引:0
|
作者
Francisco J. Palomo
Alfonso Romero
机构
[1] Universidad de Málaga,Departamento de Matemática Aplicada
[2] Universidad de Granada,Departamento de Geometría y Topología
来源
关键词
Lorentzian Geometry; Causal conjugate points; Timelike conformal vector fields;
D O I
暂无
中图分类号
学科分类号
摘要
A sequence of integral inequalities for any compact conformally stationary Lorentzian manifold with no conjugate points along its causal geodesics is obtained. If the equality holds for one of them, the Lorentzian manifold must be flat. As an application, several classification results for such manifolds are proved.
引用
收藏
页码:135 / 144
页数:9
相关论文
共 50 条
  • [1] Compact conformally stationary Lorentzian manifolds with no causal conjugate points
    Palomo, Francisco J.
    Romero, Alfonso
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (02) : 135 - 144
  • [2] CONFORMALLY STATIONARY LORENTZIAN TORI WITH NO CONJUGATE POINTS ARE FLAT
    Palomo, Francisco J.
    Romero, Alfonso
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (07) : 2403 - 2406
  • [3] Lorentzian manifolds with no null conjugate points
    Gutiérrez, M
    Palomo, FJ
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 : 363 - 375
  • [4] On compact Lorentzian surfaces without conjugate points
    Bavard, Christophe
    Mounoud, Pierre
    GEOMETRY & TOPOLOGY, 2013, 17 (01) : 469 - 492
  • [6] CONFORMALLY OSSERMAN LORENTZIAN MANIFOLDS
    Blazic, Novica
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2005, 28 : 87 - 96
  • [7] Conformally flat homogeneous Lorentzian manifolds
    Honda, Kyoko
    Tsukada, Kazumi
    Springer Proceedings in Mathematics and Statistics, 2013, 26 : 295 - 314
  • [8] Conjugate and conformally conjugate parallelisms on Finsler manifolds
    Bernadett Aradi
    Mansoor Barzegari
    Akbar Tayebi
    Periodica Mathematica Hungarica, 2017, 74 : 22 - 30
  • [9] Conjugate and conformally conjugate parallelisms on Finsler manifolds
    Aradi, Bernadett
    Barzegari, Mansoor
    Tayebi, Akbar
    PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (01) : 22 - 30
  • [10] ON CONFORMALLY COMPACT EINSTEIN MANIFOLDS
    Chang, Sun-Yung A.
    Ge, Yuxin
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 64 (01): : 199 - 213