Reconfigurable Hardware Accelerator for Profile Hidden Markov Models

被引:0
|
作者
Atef Ibrahim
Hamed Elsimary
Abdullah Aljumah
Fayez Gebali
机构
[1] Prince Sattam Bin Abdulaziz University,
[2] Electronics Research Institute,undefined
[3] University of Victoria,undefined
关键词
High-performance computing; Parallel processing; Processor arrays; Bio-computing; Protein sequence alignment; Reconfigurable computing; Profile hidden Markov model;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a processor array accelerator for profile hidden Markov models of the Viterbi algorithm. The proposed processor array has the advantage that it can be modified to enable hardware reuse rather than replicating processing elements of the processor array on a cluster of FPGAs. Also, it has the advantage of reducing the area overhead of the FPGA compared to the previously published conventional processor arrays. This allows for increasing the number of processing elements and the system throughput. The proposed processor array and the previously reported conventional one are coded using the VHDL language and implemented using the FPGA technology. The implementation results showed that the proposed design achieves 1.31× to 1.75×speedup and saves area ranging from 24.4 to 34.0% over the conventional design for profile HMM query lengths ranging from 38 to 2295.
引用
收藏
页码:3267 / 3277
页数:10
相关论文
共 50 条
  • [1] Reconfigurable Hardware Accelerator for Profile Hidden Markov Models
    Ibrahim, Atef
    Elsimary, Hamed
    Aljumah, Abdullah
    Gebali, Fayez
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2016, 41 (08) : 3267 - 3277
  • [2] Accelerating the Viterbi algorithm for Profile Hidden Markov Models using reconfigurable hardware
    Oliver, Timothy F.
    Schmidt, Bertil
    Jakop, Yanto
    Maskell, Douglas L.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 522 - 529
  • [3] An FPGA-based hardware accelerator supporting sensitive sequence homology filtering with profile hidden Markov models
    Anderson, Tim
    Wheeler, Travis J.
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [4] Profile hidden Markov models
    Eddy, SR
    BIOINFORMATICS, 1998, 14 (09) : 755 - 763
  • [5] Are Profile Hidden Markov Models Identifiable?
    Pattabiraman, Srilakshmi
    Warnow, Tandy
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 448 - 456
  • [6] Profile Hidden Markov Models Are Not Identifiable
    Pattabiraman, Srilakshmi
    Warnow, Tandy
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (01) : 162 - 172
  • [7] Truncated profile hidden Markov models
    Smith, SF
    PROCEEDINGS OF THE 2005 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2005, : 257 - 261
  • [8] Interpreting human activity from electrical consumption data using reconfigurable hardware and hidden Markov models
    F. J. Ferrández-Pastor
    H. Mora-Mora
    J. L. Sánchez-Romero
    M. Nieto-Hidalgo
    J. M. García-Chamizo
    Journal of Ambient Intelligence and Humanized Computing, 2017, 8 : 469 - 483
  • [9] Interpreting human activity from electrical consumption data using reconfigurable hardware and hidden Markov models
    Ferrandez-Pastor, F. J.
    Mora-Mora, H.
    Sanchez-Romero, J. L.
    Nieto-Hidalgo, M.
    Garcia-Chamizo, J. M.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2017, 8 (04) : 469 - 483
  • [10] Universal Reconfigurable Hardware Accelerator for Sparse Machine Learning Predictive Models
    Vranjkovic, Vuk
    Teodorovic, Predrag
    Struharik, Rastislav
    ELECTRONICS, 2022, 11 (08)