Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind

被引:3
|
作者
Azmoodeh E. [1 ]
Viitasaari L. [2 ]
机构
[1] Mathematics Research Unit, Luxembourg University, P.O. Box L-1359, Luxembourg-Kirchberg
[2] Department of Mathematics and System Analysis, Aalto University School of Science, Helsinki, P.O. Box 11100, Aalto
关键词
Central limit theorem (CLT); Fractional Ornstein–Uhlenbeck processes; Malliavin calculus; Multiple Wiener integrals; Parameter estimation;
D O I
10.1007/s11203-014-9111-8
中图分类号
学科分类号
摘要
Fractional Ornstein–Uhlenbeck process of the second kind (fOU2) is a solution of the Langevin equation (Formula presented.) with a Gaussian driving noise (Formula presented.), where (Formula presented.) and B is a fractional Brownian motion with Hurst parameter H∈(0,1). In this article we consider the case H>12, and by using the ergodicity of fOU2 process we construct consistent estimators for the drift parameter θ based on discrete observations in two possible cases:(i) the Hurst parameter H is known and (ii) the Hurst parameter H is unknown. Moreover, using Malliavin calculus techniques we prove central limit theorems for our estimators which are valid for the whole range H∈(12,1). © 2014, Springer Science+Business Media Dordrecht.
引用
收藏
页码:205 / 227
页数:22
相关论文
共 50 条
  • [1] Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind
    Azmoodeh, Ehsan
    Morlanes, Jose Igor
    STATISTICS, 2015, 49 (01) : 1 - 18
  • [2] Ergodicity and Drift Parameter Estimation for Infinite-Dimensional Fractional Ornstein–Uhlenbeck Process of the Second Kind
    Maoudo Faramba Balde
    Khalifa Es-Sebaiy
    Ciprian A. Tudor
    Applied Mathematics & Optimization, 2020, 81 : 785 - 814
  • [3] Ergodicity and Drift Parameter Estimation for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process of the Second Kind
    Balde, Maoudo Faramba
    Es-Sebaiy, Khalifa
    Tudor, Ciprian A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03): : 785 - 814
  • [4] Asymptotic properties for the parameter estimation in Ornstein-Uhlenbeck process with discrete observations
    Jiang, Hui
    Liu, Hui
    Zhou, Youzhou
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3192 - 3229
  • [5] On parameter estimation of fractional Ornstein-Uhlenbeck process
    Farah, Fatima-Ezzahra
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2022, 30 (03) : 161 - 170
  • [6] Parameter estimation for reflected Ornstein–Uhlenbeck processes with discrete observations
    Hu Y.
    Lee C.
    Lee M.H.
    Song J.
    Statistical Inference for Stochastic Processes, 2015, 18 (3) : 279 - 291
  • [7] Parameter estimation for the skew Ornstein-Uhlenbeck processes based on discrete observations
    Xing, Xiaoyu
    Zhao, Danfeng
    Li, Bing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (09) : 2176 - 2188
  • [8] Comparative Estimation for Discrete Fractional Ornstein-Uhlenbeck Process
    Rifo, Laura
    Torres, Soledad
    Tudor, Ciprian A.
    STOCHASTIC MODELS, 2013, 29 (03) : 291 - 305
  • [9] Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation
    Janczura, Joanna
    Magdziarz, Marcin
    Metzler, Ralf
    CHAOS, 2023, 33 (10)
  • [10] Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation
    Xiao, Weilin
    Zhang, Weiguo
    Xu, Weidong
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (09) : 4196 - 4207