共 50 条
Commuting Involution Graphs for Certain Exceptional Groups of Lie Type
被引:0
|作者:
Ali Aubad
Peter Rowley
机构:
[1] University of Baghdad,
[2] University of Manchester,undefined
来源:
关键词:
Commuting involution graphs;
Exceptional groups of Lie type;
Disc structure;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Suppose that G is a finite group and X is a G-conjugacy classes of involutions. The commuting involution graph C(G,X)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {C}}(G,X)$$\end{document} is the graph whose vertex set is X with x,y∈X\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x, y \in X$$\end{document} being joined if x≠y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x \ne y$$\end{document} and xy=yx\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$xy = yx$$\end{document}. Here for various exceptional Lie type groups of characteristic two we investigate their commuting involution graphs.
引用
收藏
页码:1345 / 1355
页数:10
相关论文