Commuting Involution Graphs for Certain Exceptional Groups of Lie Type

被引:0
|
作者
Ali Aubad
Peter Rowley
机构
[1] University of Baghdad,
[2] University of Manchester,undefined
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Commuting involution graphs; Exceptional groups of Lie type; Disc structure;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a finite group and X is a G-conjugacy classes of involutions. The commuting involution graph C(G,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}(G,X)$$\end{document} is the graph whose vertex set is X with x,y∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x, y \in X$$\end{document} being joined if x≠y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne y$$\end{document} and xy=yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy = yx$$\end{document}. Here for various exceptional Lie type groups of characteristic two we investigate their commuting involution graphs.
引用
收藏
页码:1345 / 1355
页数:10
相关论文
共 50 条