For incomplete financial markets, jumps in both prices and consumption can be unavoidable. We consider pure-exchange economies with infinite horizon, discrete time, uncertainty with a continuum of possible shocks at every date. The evolution of shocks follows a Markov process, and fundamentals depend continuously on shocks. It is shown that: (1) equilibria exist; (2) for effectively complete financial markets, asset prices depend continuously on shocks; and (3) for incomplete financial markets, there is an open set of economies U\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\fancyscript{U}}$$\end{document} such that for every equilibrium of every economy in U\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\fancyscript{U}}$$\end{document}, asset prices at every date depend discontinuously on the shock at that date.