Kinetic analysis of Li|Li+ interphase in an ionic liquid electrolyte

被引:0
|
作者
Andrzej Lewandowski
Marcin Biegun
Maciej Galinski
Agnieszka Swiderska-Mocek
机构
[1] Poznań University of Technology,Faculty of Chemical Technology
来源
关键词
Ionic liquid; Lithium; Lithium-ion battery; SEI; EIS;
D O I
暂无
中图分类号
学科分类号
摘要
Kinetic analysis of the Li|Li+ interphase in an electrolyte based on N-metyl-N-propylpyrrolidinium bis(trifluoromethanesulfon)imide ionic liquid (MPPyrrTFSI) and lithium bis(trifluoromethanesulfon)imide salt (LiTFSI) was performed. Li|electrolyte|Li and LiC6|electrolyte|Li cells were galvanostatically charged/discharged in order to form solid electrolyte interphase (SEI) protecting layer. SEM images showed that the surface of both Li and LiC6 anodes was covered with small particles. The fitting procedure of electrochemical impedance data taken at different temperatures gave three resistances (Rel, RSEI, Rct) and hence, three lnR = f(T−1) straight lines of different slopes. Specific conductivity and activation energy of the conduction process of the liquid electrolyte, were ca. σ = 2.5 mS cm−1 (at T = 25.0 °C) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_{\text{el}}^{\# } $$\end{document} = 15 kJ mol−1. Activation energy for the conduction process in the SEI layer was ca. 56 kJ mol−1 in the case of the metallic lithium and 62 kJ mol−1 for the graphite anode. Activation energy of the charge transfer process, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_{\text{ct}}^{\# } $$\end{document}, for Li and LiC6 anodes was 71 and 65 kJ mol−1, respectively. Analysis of literature data for different electrolytes suggests that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_{\text{ct}}^{\# } $$\end{document} value for Li+ reduction may be approximated by 57 ± 5 kJ mol−1. Activation energy for the diffusion processes in the graphite electrode, detected from the Warburg coefficient, was ca 74 kJ mol−1.
引用
收藏
页码:367 / 374
页数:7
相关论文
共 50 条
  • [1] Kinetic analysis of Li|Li+ interphase in an ionic liquid electrolyte
    Lewandowski, Andrzej
    Biegun, Marcin
    Galinski, Maciej
    Swiderska-Mocek, Agnieszka
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (03) : 367 - 374
  • [2] Ionic Liquid in Li Salt Electrolyte: Modifying the Li+ Transport Mechanism by Coordination to an Asymmetric Anion
    Brinkkoetter, Marc
    Mariani, Alessandro
    Jeong, Sangsik
    Passerini, Stefano
    Schoenhoff, Monika
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (02):
  • [3] Characterization of the Solid Electrolyte Interphase at the Li Metal-Ionic Liquid Interface
    Yang, Moon Young
    Zybin, Sergey V.
    Das, Tridip
    Merinov, Boris V.
    Goddard, William A., III
    Mok, Eun Kyung
    Hah, Hoe Jin
    Han, Hyea Eun
    Choi, Young Cheol
    Kim, Seung Ha
    ADVANCED ENERGY MATERIALS, 2023, 13 (03)
  • [4] An Ionic Liquid Electrolyte with Enhanced Li+ Transport Ability Enables Stable Li Deposition for High-Performance Li-O2 Batteries
    Cai, Yichao
    Zhang, Qiu
    Lu, Yong
    Hao, Zhimeng
    Ni, Youxuan
    Chen, Jun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (49) : 25973 - 25980
  • [5] Modulation of Li+ microenvironment in liquid electrolyte for interface design of Li-metal anodes
    Lim, Minhong
    Lee, Jiwon
    Lee, Soyeon
    Park, Seungsoo
    Lee, Hongkyung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2024, 45 (08) : 648 - 663
  • [6] Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries
    Lewandowski, Andrzej
    Swiderska-Mocek, Agnieszka
    Waliszewski, Lukasz
    ELECTROCHIMICA ACTA, 2013, 92 : 404 - 411
  • [7] Revealing the Influence of Electron Migration Inside Polymer Electrolyte on Li+ Transport and Interphase Reconfiguration for Li Metal Batteries
    Jin, Yingmin
    Lin, Ruifan
    Li, Yumeng
    Zhang, Xuebai
    Tan, Siping
    Shuai, Yong
    Xiong, Yueping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (24)
  • [8] Li+ Local Structure in Hydrofluoroether Diluted Li-Glyme Solvate Ionic Liquid
    Saito, Soshi
    Watanabe, Hikari
    Ueno, Kazuhide
    Mandai, Toshihiko
    Seki, Shiro
    Tsuzuki, Seiji
    Kameda, Yasuo
    Dokko, Kaoru
    Watanabe, Masayoshi
    Umebayashi, Yasuhiro
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (13): : 3378 - 3387
  • [9] Confinement-enhanced Li+ ion dynamics in an ionic liquid-based electrolyte in porous material
    Hessling, Janis
    Lange, Martin
    Schoenhoff, Monika
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (35) : 23510 - 23518
  • [10] Li+ ionic diffusion in Li-Cu-O compounds
    Nakamura, Koichi
    Kawai, Kenta
    Yamada, Koji
    Michihiro, Yoshitaka
    Moriga, Toshihiro
    Nakabayashi, Ichiro
    Kanashiro, Tatsuo
    SOLID STATE IONICS, 2006, 177 (26-32) : 2775 - 2778