Low power thrust measurements of the water electrolysis Hall effect thruster

被引:0
|
作者
Alexander Schwertheim
Aaron Knoll
机构
[1] Imperial College London,
来源
CEAS Space Journal | 2022年 / 14卷
关键词
Hall effect thruster; Alternative propellants; Water propulsion; Electrolysis; Multimode propulsion;
D O I
暂无
中图分类号
学科分类号
摘要
We propose that a Hall effect thruster could be modified to operate on the products of water electrolysis. Such a thruster would exploit the low cost and high storability of water while producing gaseous hydrogen and oxygen in-situ as they are required. By supplying the anode with oxygen and the cathode with hydrogen, the poisoning of the cathode is mitigated. The water electrolysis Hall effect thruster (WET-HET) has been designed to demonstrate this concept. The dimensions of the WET-HET have been optimized for oxygen operation using PlasmaSim, a zero-dimensional particle in cell code. We present the first direct thrust measurements of the WET-HET. A hanging pendulum style thrust balance is used to measure the thrust of the WET-HET while operating in the Boltzmann vacuum facility within the Imperial Plasma Propulsion Laboratory. For this test the beam was neutralized using a filament plasma bridge neutralizer operating on krypton. We find thrust, specific impulse, and thrust efficiency all increase linearly with power for values between 400 and 1050 W. Increasing the mass flow rate from 0.96 to 1.85 mg/s increases thrust at the expense of specific impulse. Changing mass flow rate was found to have little impact on the thrust efficiency over this range. An optimal radial magnetic flux density of 403 G at the exit plane is found. Further increases to the magnetic field beyond this point were found to decrease the thrust, specific impulse and thrust efficiency, whereas the discharge voltage increased monotonically with increasing magnetic field for a given input power. It was found that the experimental thruster performance was lower than the simulation results from PlasmaSim. However, the general trends in performance as a function of power and propellant mass flow rate were preserved. We attribute a portion of this discrepancy to the inability of the simulation to model the energy absorbed by the covalent bond of the oxygen molecule. For the powers and mass flow rates surveyed we measured thrust ranging from 4.52±0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 0.18\,$$\end{document} to 8.45±0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 0.18\,$$\end{document}mN, specific impulse between 324±12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 12\,$$\end{document} and 593±12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 12\,$$\end{document}s, and anode thrust efficiencies between 1.34±0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 0.10\,$$\end{document} and 2.34±0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 0.10\,$$\end{document}%.
引用
收藏
页码:3 / 17
页数:14
相关论文
共 50 条
  • [1] Low power thrust measurements of the water electrolysis Hall effect thruster
    Schwertheim, Alexander
    Knoll, Aaron
    CEAS SPACE JOURNAL, 2022, 14 (01) : 3 - 17
  • [2] Experimental investigation of a water electrolysis Hall effect thruster
    Schwertheim, Alexander
    Knoll, Aaron
    ACTA ASTRONAUTICA, 2022, 193 : 607 - 618
  • [3] Beam Divergence and Thrust Vector Deviation Characteristics of Low-Power Hall Thruster
    Chen X.-W.
    Gu Z.
    Gao J.
    Guo N.
    Wang S.-M.
    Shi K.
    Tang F.-J.
    Chen T.
    Guo W.-L.
    Zhang H.
    Cheng R.
    Tuijin Jishu/Journal of Propulsion Technology, 2022, 43 (08):
  • [4] A study on simultaneous design of a Hall Effect Thruster and its low-thrust trajectory
    Kwon, Kybeom
    Lantoine, Gregory
    Russell, Ryan P.
    Mavris, Dimitri N.
    ACTA ASTRONAUTICA, 2016, 119 : 34 - 47
  • [5] Performance of a low power Hall effect thruster with several gaseous propellants
    Munro-O'Brien, Thomas F.
    Ryan, Charles N.
    ACTA ASTRONAUTICA, 2023, 206 : 257 - 273
  • [6] Small Hall Effect Thruster with 3D Printed Discharge Channel: Design and Thrust Measurements
    Hopping, Ethan P.
    Huang, Wensheng
    Xu, Kunning G.
    AEROSPACE, 2021, 8 (08)
  • [7] Ion Velocity Measurements Within the Acceleration Channel of a Low-Power Hall Thruster
    Hargus, William A., Jr.
    Nakles, Michael R.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (05) : 1989 - 1997
  • [8] Experimental demonstration of a water electrolysis Hall Effect Thruster (WET-HET) operating with a hydrogen cathode
    Tejeda, J. M.
    Potrivitu, G. -C.
    Azevedo, E. Rosati
    Moloney, R.
    Knoll, A.
    ACTA ASTRONAUTICA, 2024, 219 : 542 - 554
  • [9] Effect of vortex inlet mode on low-power cylindrical Hall thruster
    Ding, Yongjie
    Jia, Boyang
    Xu, Yu
    Wei, Liqiu
    Su, Hongbo
    Li, Peng
    Sun, Hezhi
    Peng, Wuji
    Cao, Yong
    Yu, Daren
    PHYSICS OF PLASMAS, 2017, 24 (08)
  • [10] Operating characterization of low power planar Hall thruster
    Ren, Linyuan
    Wang, Yanan
    Jin, Liyun
    Fu, Yuliang
    Sun, Anbang
    Ding, Weidong
    Tuijin Jishu/Journal of Propulsion Technology, 2024, 45 (02):