SLIC-supervoxels-based response evaluation of osteosarcoma treated with neoadjuvant chemotherapy using multi-parametric MR imaging

被引:0
|
作者
Esha Baidya Kayal
Devasenathipathy Kandasamy
Raju Sharma
Mehar C. Sharma
Sameer Bakhshi
Amit Mehndiratta
机构
[1] Indian Institute of Technology Delhi,Centre for Biomedical Engineering
[2] All India Institute of Medical Sciences,Department of Radiology
[3] All India Institute of Medical Sciences,Department of Pathology
[4] All India Institute of Medical Sciences,Department of Medical Oncology, Dr. B.R. Ambedkar Institute
[5] All India Institute of Medical Sciences,Rotary Cancer Hospital (IRCH)
来源
European Radiology | 2020年 / 30卷
关键词
Chemotherapy; Treatment outcome; Magnetic resonance imaging; Computer-assisted decision-making; Osteosarcoma;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3125 / 3136
页数:11
相关论文
共 50 条
  • [1] SLIC-supervoxels-based response evaluation of osteosarcoma treated with neoadjuvant chemotherapy using multi-parametric MR imaging
    Baidya Kayal, Esha
    Kandasamy, Devasenathipathy
    Sharma, Raju
    Sharma, Mehar C.
    Bakhshi, Sameer
    Mehndiratta, Amit
    EUROPEAN RADIOLOGY, 2020, 30 (06) : 3125 - 3136
  • [2] Prediction of chemotherapy response in osteosarcoma using multi-parametric PET/MRI texture feature
    Park, Y.
    Kim, W.
    Byun, B.
    Kang, J.
    Kong, C.
    Song, W.
    Lim, I.
    Lee, Y.
    Kim, B.
    Lim, S.
    Woo, S.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 : S443 - S444
  • [3] Dynamic contrast-enhanced MR imaging evaluation of osteosarcoma response to neoadjuvant chemotherapy
    Reddick, WE
    Bhargava, R
    Taylor, JS
    Meyer, WH
    Fletcher, BD
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 1995, 5 (06) : 689 - 694
  • [4] Texture analysis for chemotherapy response evaluation in osteosarcoma using MR imaging
    Baidya Kayal, Esha
    Kandasamy, Devasenathipathy
    Khare, Kedar
    Bakhshi, Sameer
    Sharma, Raju
    Mehndiratta, Amit
    NMR IN BIOMEDICINE, 2021, 34 (02)
  • [5] Response Monitoring to Neoadjuvant Chemotherapy in Osteosarcoma Using Dynamic Contrast-Enhanced MR Imaging
    Bu-Tian Zhang
    Qian Zheng
    Lin Liu
    Yan-Ni Zeng
    Yi-Meng Dai
    Jin-Lan Jiang
    Kai-ming Xue
    SN Comprehensive Clinical Medicine, 2019, 1 (5) : 319 - 327
  • [6] Breast Cancer: Early Prediction of Response to Neoadjuvant Chemotherapy Using Parametric Response Maps for MR Imaging
    Su, M. -Y. L.
    BREAST DISEASES, 2015, 26 (02): : 134 - 137
  • [7] Breast Cancer: Early Prediction of Response to Neoadjuvant Chemotherapy Using Parametric Response Maps for MR Imaging
    Cho, Nariya
    Im, Seock-Ah
    Park, In-Ae
    Lee, Kyung-Hun
    Li, Mulan
    Han, Wonshik
    Noh, Dong-Young
    Moon, Woo Kyung
    RADIOLOGY, 2014, 272 (02) : 385 - 396
  • [8] Feasibility of multi-parametric magnetic resonance imaging combined with machine learning in the assessment of necrosis of osteosarcoma after neoadjuvant chemotherapy: a preliminary study
    Bingsheng Huang
    Jifei Wang
    Meili Sun
    Xin Chen
    Danyang Xu
    Zi-Ping Li
    Jinting Ma
    Shi-Ting Feng
    Zhenhua Gao
    BMC Cancer, 20
  • [9] Feasibility of multi-parametric magnetic resonance imaging combined with machine learning in the assessment of necrosis of osteosarcoma after neoadjuvant chemotherapy: a preliminary study
    Huang, Bingsheng
    Wang, Jifei
    Sun, Meili
    Chen, Xin
    Xu, Danyang
    Li, Zi-Ping
    Ma, Jinting
    Feng, Shi-Ting
    Gao, Zhenhua
    BMC CANCER, 2020, 20 (01)
  • [10] Prediction of breast cancer and axillary positive-node response to neoadjuvant chemotherapy based on multi-parametric magnetic resonance imaging radiomics models
    Lin, Yingyu
    Wang, Jifei
    Li, Meizhi
    Zhou, Chunxiang
    Hu, Yangling
    Wang, Mengyi
    Zhang, Xiaoling
    BREAST, 2024, 76