A linear-time algorithm for finding Hamiltonian (s, t)-paths in odd-sized rectangular grid graphs with a rectangular hole

被引:0
|
作者
Fatemeh Keshavarz-Kohjerdi
Alireza Bagheri
机构
[1] Amirkabir University of Technology,Department of Computer Engineering and IT
来源
The Journal of Supercomputing | 2017年 / 73卷
关键词
Grid graph; Hamiltonian path; Rectangular grid graphs with a hole; NP-complete;
D O I
暂无
中图分类号
学科分类号
摘要
A grid graph Gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathrm{g}}$$\end{document} is a finite vertex-induced subgraph of the two-dimensional integer grid G∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^\infty $$\end{document}. A rectangular grid graph R(m, n) is a grid graph with horizontal size m and vertical size n. A rectangular grid graph with a rectangular hole is a rectangular grid graph R(m, n) such that a rectangular grid subgraph R(k, l) is removed from it. The Hamiltonian path problem for general grid graphs is NP-complete. In this paper, we give necessary conditions for the existence of a Hamiltonian path between two given vertices in an odd-sized rectangular grid graph with a rectangular hole. In addition, we show that how such paths can be computed in linear time.
引用
收藏
页码:3821 / 3860
页数:39
相关论文
共 23 条