The approximation by q-Bernstein polynomials in the case q ↓ 1

被引:0
|
作者
Sofiya Ostrovska
机构
[1] Atilim University,Department of Mathematics
来源
Archiv der Mathematik | 2006年 / 86卷
关键词
41A10; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
Let Bn (f, q; x), n=1, 2, ... , 0 < q < ∞, be the q-Bernstein polynomials of a function f, Bn (f, 1; x) being the classical Bernstein polynomials. It is proved that, in general, {Bn (f, qn; x)} with qn ↓ 1 is not an approximating sequence for f ∈C[0, 1], in contrast to the standard case qn ↓ 1. At the same time, there exists a sequence 0 < δn ↓ 0 such that the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leqq q_{n} \leqq \delta _{n} $$\end{document} implies the approximation of f by {Bn (f, qn; x)} for all f ∈C[0, 1].
引用
收藏
页码:282 / 288
页数:6
相关论文
共 50 条