Affine extractors over large fields with exponential error

被引:0
|
作者
Jean Bourgain
Zeev Dvir
Ethan Leeman
机构
[1] Institute for Advanced Study,School of Mathematics
[2] Princeton University,Department of Computer Science
[3] Princeton University,Department of Mathematics
[4] The University of Texas at Austin,Department of Mathematics
来源
computational complexity | 2016年 / 25卷
关键词
Explicit constructions; derandomization; finite fields; 68W20;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a construction of explicit affine extractors over large finite fields with exponentially small error and linear output length. Our construction relies on a deep theorem of Deligne giving tight estimates for exponential sums over smooth varieties in high dimensions.
引用
收藏
页码:921 / 931
页数:10
相关论文
共 50 条
  • [1] Affine extractors over large fields with exponential error
    Bourgain, Jean
    Dvir, Zeev
    Leeman, Ethan
    COMPUTATIONAL COMPLEXITY, 2016, 25 (04) : 921 - 931
  • [2] Deterministic extractors for affine sources over large fields
    Gabizon, A
    Raz, R
    46TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2005, : 407 - 416
  • [3] Deterministic extractors for affine sources over large fields
    Gabizon, Arjel
    Raz, Ran
    COMBINATORICA, 2008, 28 (04) : 415 - 440
  • [4] Deterministic extractors for affine sources over large fields
    Ariel Gabizon
    Ran Raz
    Combinatorica, 2008, 28 : 415 - 440
  • [5] Affine extractors over prime fields
    Yehudayoff, Amir
    COMBINATORICA, 2011, 31 (02) : 245 - 256
  • [6] Affine extractors over prime fields
    Amir Yehudayoff
    Combinatorica, 2011, 31 : 245 - 256
  • [7] Exponential Sums Over Finite Fields and the Large Sieve
    Perret-Gentil, Corentin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (20) : 7139 - 7174
  • [8] On the Construction of Affine Extractors
    Jean Bourgain
    GAFA Geometric And Functional Analysis, 2007, 17 : 33 - 57
  • [9] On the construction of affine extractors
    Bourgain, Jean
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (01) : 33 - 57
  • [10] AFFINE SPACES OVER PRIME FIELDS
    CSAKANY, B
    ACTA SCIENTIARUM MATHEMATICARUM, 1975, 37 (1-2): : 33 - 36