Let G⊊C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G \subsetneq \mathbb {C}$$\end{document} be a bounded, simply connected domain in C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {C}$$\end{document}, and denote by Q(G):=f:G⟶G|fis a quasiconformal mapping ofGontoG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} Q(G):= \left\{ f: G \longrightarrow G \ |\ f \text { is a quasiconformal mapping of } G \text { onto } G \ \right\} \end{aligned}$$\end{document}the quasiconformal automorphism group of G. In a canonical manner, the set Q(G) carries the structure of a (non–abelian) group with respect to composition of mappings. Moreover, we endow the set Q(G) with the topology of uniform convergence by the supremum metric dsup(f,g):=supz∈Gf(z)-g(z),f,g∈Q(G).\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} d_{\sup }(f, g):= \sup \limits _{z \in G} \left| f(z) - g(z) \right| , f, g \in Q(G). \end{aligned}$$\end{document}In this paper, we present results concerning topological properties of Q(G) such as completeness, separability, path–connectedness, discreteness and compactness.