Topological properties of quasiconformal automorphism groups

被引:0
|
作者
Florian Biersack
Wolfgang Lauf
机构
[1] University of Würzburg,Chair for Complex Analysis
[2] OTH Regensburg,Department of Computer Science and Mathematics
关键词
Quasiconformal mapping; Automorphism group; Topology of uniform convergence; Metric space; 30C62; 54E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let G⊊C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \subsetneq \mathbb {C}$$\end{document} be a bounded, simply connected domain in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document}, and denote by Q(G):=f:G⟶G|fis a quasiconformal mapping ofGontoG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Q(G):= \left\{ f: G \longrightarrow G \ |\ f \text { is a quasiconformal mapping of } G \text { onto } G \ \right\} \end{aligned}$$\end{document}the quasiconformal automorphism group of G. In a canonical manner, the set Q(G) carries the structure of a (non–abelian) group with respect to composition of mappings. Moreover, we endow the set Q(G) with the topology of uniform convergence by the supremum metric dsup(f,g):=supz∈Gf(z)-g(z),f,g∈Q(G).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} d_{\sup }(f, g):= \sup \limits _{z \in G} \left| f(z) - g(z) \right| , f, g \in Q(G). \end{aligned}$$\end{document}In this paper, we present results concerning topological properties of Q(G) such as completeness, separability, path–connectedness, discreteness and compactness.
引用
收藏
页码:2397 / 2407
页数:10
相关论文
共 50 条