Relation-attention semantic-correlative knowledge graph embedding for inductive link prediction

被引:0
|
作者
Li Xiaonan
Ning Bo
Li Guanyu
Wang Jie
机构
[1] Dalian Maritime University,Faculty of Information Science and Technology
关键词
Knowledge graph embedding; Inductive link prediction; Relational subgraph; Graph neural network;
D O I
暂无
中图分类号
学科分类号
摘要
Link prediction has increasingly been the focus of significant research interest, benefited from the explosion of machine learning and deep learning techniques. Graph embedding has been proven to be an effective method for predicting missing links in graph-based structure. In this work, we propose a novel relation-attention semantic-correlative graph embedding for inductive link prediction. Unlike existing embedding-based methods, we shift the node representation learning from a node’s perspective to a relational subgraph perspective. Our model has a better inductive bias to learn entity-independent relational semantics. We consider two kinds of relational subgraph topology for a given entity pair: relational correlation subgraph and relational path subgraph. Firstly, we capture the structure of neighboring relation-properties of semantic-missing entity by relational correlation subgraph. Secondly, we capture the set of relational paths between given entity pair by relational path subgraph. Finally, we organize the above two modules in a unified framework for relation prediction. Our ablation experiments show that two kinds of relational subgraph topology are important for relation prediction. Experimental results on six benchmark datasets demonstrate that our proposed graph embedding outperforms existing state-of-the-art models for link prediction tasks.
引用
收藏
页码:3799 / 3811
页数:12
相关论文
共 50 条
  • [1] Relation-attention semantic-correlative knowledge graph embedding for inductive link prediction
    Li, Xiaonan
    Ning, Bo
    Li, Guanyu
    Wang, Jie
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (11) : 3799 - 3811
  • [2] Open Knowledge Graph Link Prediction with Semantic-Aware Embedding
    Wang, Jingbin
    Huang, Hao
    Wu, Yuwei
    Zhang, Fuyuan
    Zhang, Sirui
    Guo, Kun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [3] Relation semantic fusion in subgraph for inductive link prediction in knowledge graphs
    Liu, Hongbo
    Lu, Jicang
    Zhang, Tianzhi
    Hou, Xuemei
    An, Peng
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [4] Relation semantic fusion in subgraph for inductive link prediction in knowledge graphs
    Liu, Hongbo
    Lu, Jicang
    Zhang, Tianzhi
    Hou, Xuemei
    An, Peng
    PeerJ Computer Science, 2024, 10
  • [5] Global Graph Attention Embedding Network for Relation Prediction in Knowledge Graphs
    Li, Qian
    Wang, Daling
    Feng, Shi
    Niu, Cheng
    Zhang, Yifei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6712 - 6725
  • [6] Hierarchical-aware relation rotational knowledge graph embedding for link prediction
    Wang, Shensi
    Fu, Kun
    Sun, Xian
    Zhang, Zequn
    Li, Shuchao
    Jin, Li
    NEUROCOMPUTING, 2021, 458 (458) : 259 - 270
  • [7] Knowledge graph embedding by logical-default attention graph convolution neural network for link prediction
    Zhang, Jiarui
    Huang, Jian
    Gao, Jialong
    Han, Runhai
    Zhou, Cong
    INFORMATION SCIENCES, 2022, 593 : 201 - 215
  • [8] Knowledge Graph Embedding for Link Prediction: A Comparative Analysis
    Rossi, Andrea
    Barbosa, Denilson
    Firmani, Donatella
    Matinata, Antonio
    Merialdo, Paolo
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (02)
  • [9] A Hierarchical Knowledge Graph Embedding Framework for Link Prediction
    Liu, Shuang
    Hou, Chengwang
    Meng, Jiana
    Chen, Peng
    Kolmanic, Simon
    IEEE ACCESS, 2024, 12 : 173338 - 173350
  • [10] Embedding based Link Prediction for Knowledge Graph Completion
    Biswas, Russa
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3221 - 3224