Transition from an atomic to a molecular Bose–Einstein condensate

被引:0
|
作者
Zhendong Zhang
Liangchao Chen
Kai-Xuan Yao
Cheng Chin
机构
[1] University of Chicago,James Franck Institute, Enrico Fermi Institute and Department of Physics
[2] Shanxi University,State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto
来源
Nature | 2021年 / 592卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Molecular quantum gases (that is, ultracold and dense molecular gases) have many potential applications, including quantum control of chemical reactions, precision measurements, quantum simulation and quantum information processing1–3. For molecules, to reach the quantum regime usually requires efficient cooling at high densities, which is frequently hindered by fast inelastic collisions that heat and deplete the population of molecules4,5. Here we report the preparation of two-dimensional Bose–Einstein condensates (BECs) of spinning molecules by inducing pairing interactions in an atomic condensate near a g-wave Feshbach resonance6. The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be + 220(±30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitarity limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen−Cooper−Schrieffer (BCS) superfluid in a Fermi gas7–9. In addition, our experiment may shed light on condensed pairs with orbital angular momentum, where a novel anisotropic superfluid with non-zero surface current is predicted10,11, such as the A phase of 3He.
引用
收藏
页码:708 / 711
页数:3
相关论文
共 50 条
  • [1] Transition from an atomic to a molecular Bose-Einstein condensate
    Zhang, Zhendong
    Chen, Liangchao
    Yao, Kai-Xuan
    Chin, Cheng
    NATURE, 2021, 592 (7856) : 708 - +
  • [2] Optimal conversion of an atomic to a molecular Bose-Einstein condensate
    Hornung, T
    Gordienko, S
    de Vivie-Riedle, R
    Verhaar, BJ
    PHYSICAL REVIEW A, 2002, 66 (04): : 4
  • [3] Optimal conversion of an atomic to a molecular Bose-Einstein condensate
    Hornung, Thomas
    Gordienko, Sergei
    De Vivie-Riedle, Regina
    Verhaar, Boudewijn J.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (04): : 436071 - 436074
  • [4] Transition to a Magnon Bose–Einstein Condensate
    P. E. Petrov
    G. A. Knyazev
    A. N. Kuzmichev
    P. M. Vetoshko
    V. I. Belotelov
    Yu. M. Bunkov
    JETP Letters, 2024, 119 : 118 - 122
  • [5] Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate
    Drummond, PD
    Kheruntsyan, KV
    Heinzen, DJ
    Wynar, RH
    PHYSICAL REVIEW A, 2002, 65 (06): : 636191 - 6361914
  • [6] Enhanced dimer relaxation in an atomic and molecular Bose-Einstein condensate
    Braaten, E
    Hammer, HW
    PHYSICAL REVIEW A, 2004, 70 (04): : 042706 - 1
  • [7] Spinor molecule in atomic Bose–Einstein condensate
    J. Kobayashi
    Y. Izumi
    K. Enomoto
    M. Kumakura
    Y. Takahashi
    Applied Physics B, 2009, 95 : 37 - 42
  • [8] CONVERSION FROM ATOMIC TO MOLECULAR BOSE-EINSTEIN CONDENSATE VIA CHAINWISE ADIABATIC PASSAGE
    Li, Jian
    Liu, Yong
    Cong, Shu-Lin
    MODERN PHYSICS LETTERS B, 2013, 27 (15):
  • [9] Comment on "Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate"
    Mackie, M
    Collin, A
    Javanainen, J
    PHYSICAL REVIEW A, 2005, 71 (01):
  • [10] Transition to a Magnon Bose-Einstein Condensate
    Petrov, P. E.
    Knyazev, G. A.
    Kuzmichev, A. N.
    Vetoshko, P. M.
    Belotelov, V. I.
    Bunkov, Yu. M.
    JETP LETTERS, 2024, 119 (02) : 118 - 122