Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers

被引:0
|
作者
Qingguo Wang
Peilin Jia
Fei Li
Haiquan Chen
Hongbin Ji
Donald Hucks
Kimberly Brown Dahlman
William Pao
Zhongming Zhao
机构
[1] Vanderbilt University School of Medicine,Department of Biomedical Informatics
[2] Center for Quantitative Sciences,State Key Laboratory of Cell Biology
[3] Vanderbilt University Medical Center,Department of Thoracic Surgery
[4] Institute of Biochemistry and Cell Biology,Department of Oncology
[5] Shanghai Institutes for Biological Sciences,Department of Cancer Biology
[6] Chinese Academy of Sciences,Department of Medicine/Division of Hematology
[7] Fudan University Shanghai Cancer Center,Oncology
[8] Shanghai Medical College,Department of Psychiatry
[9] Vanderbilt-Ingram Cancer Center,undefined
[10] Vanderbilt University Medical Center,undefined
[11] Vanderbilt University School of Medicine,undefined
[12] Vanderbilt University School of Medicine,undefined
[13] Vanderbilt University School of Medicine,undefined
来源
关键词
Normal Sample; Lung Cancer Cell Line; Whole Exome Sequencing; Alternate Allele; Next Generation Sequencing Data;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers
    Wang, Qingguo
    Jia, Peilin
    Li, Fei
    Chen, Haiquan
    Ji, Hongbin
    Hucks, Donald
    Dahlman, Kimberly Brown
    Pao, William
    Zhao, Zhongming
    GENOME MEDICINE, 2013, 5
  • [2] SomaticSniper: identification of somatic point mutations in whole genome sequencing data
    Larson, David E.
    Harris, Christopher C.
    Chen, Ken
    Koboldt, Daniel C.
    Abbott, Travis E.
    Dooling, David J.
    Ley, Timothy J.
    Mardis, Elaine R.
    Wilson, Richard K.
    Ding, Li
    BIOINFORMATICS, 2012, 28 (03) : 311 - 317
  • [3] In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data
    Cai, Lei
    Yuan, Wei
    Zhang, Zhou
    He, Lin
    Chou, Kuo-Chen
    SCIENTIFIC REPORTS, 2016, 6
  • [4] In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data
    Lei Cai
    Wei Yuan
    Zhou Zhang
    Lin He
    Kuo-Chen Chou
    Scientific Reports, 6
  • [5] Practicability of detecting somatic point mutation from RNA high throughput sequencing data
    Sheng, Quanhu
    Zhao, Shilin
    Li, Chung-I
    Shyr, Yu
    Guo, Yan
    GENOMICS, 2016, 107 (05) : 163 - 169
  • [6] Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data
    Kroigard, Anne Bruun
    Thomassen, Mads
    Laenkholm, Anne-Vibeke
    Kruse, Torben A.
    Larsen, Martin Jakob
    PLOS ONE, 2016, 11 (03):
  • [7] An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data
    Shiraishi, Yuichi
    Sato, Yusuke
    Chiba, Kenichi
    Okuno, Yusuke
    Nagata, Yasunobu
    Yoshida, Kenichi
    Shiba, Norio
    Hayashi, Yasuhide
    Kume, Haruki
    Homma, Yukio
    Sanada, Masashi
    Ogawa, Seishi
    Miyano, Satoru
    NUCLEIC ACIDS RESEARCH, 2013, 41 (07)
  • [8] Comprehensive Benchmark of Somatic Mutation Callers on Cell-Free DNA Next-Generation Sequencing Data in Cancer Liquid Biopsy
    Carrie, Hanae
    Sim, Ngak Leng
    Wong, Pui Mun
    Gan, Anna
    Lau, Yi Ting
    Poon, Polly
    Thangaraju, Saranya
    Tan, Iain
    Yap, Yoon Sim
    Wong, Limsoon
    Skanderup, Anders
    CANCER RESEARCH, 2024, 84 (08)
  • [9] Comparison of three variant callers for human whole genome sequencing
    Supernat, Anna
    Vidarsson, Oskar Valdimar
    Steen, Vidar M.
    Stokowy, Tomasz
    SCIENTIFIC REPORTS, 2018, 8
  • [10] Comparison of three variant callers for human whole genome sequencing
    Anna Supernat
    Oskar Valdimar Vidarsson
    Vidar M. Steen
    Tomasz Stokowy
    Scientific Reports, 8