共 50 条
Dominated Colorings of Graphs
被引:0
|作者:
Houcine Boumediene Merouane
Mohammed Haddad
Mustapha Chellali
Hamamache Kheddouci
机构:
[1] University of Blida,LAMDA
[2] Université de Lyon,RO Laboratory, Department of Mathematics
[3] Université Claude Bernard Lyon 1,Laboratoire LIRIS, UMR CNRS 5205
来源:
关键词:
Dominated coloring;
Total domination;
Algorithms ;
Triangle-free graphs;
Star-free graphs;
Split graphs;
05C15;
05C85;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we introduce and study a new coloring problem of a graph called the dominated coloring. A dominated coloring of a graph G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} is a proper vertex coloring of G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} such that each color class is dominated by at least one vertex of G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document}. The minimum number of colors among all dominated colorings is called the dominated chromatic number, denoted by χdom(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _{dom}(G)$$\end{document}. In this paper, we establish the close relationship between the dominated chromatic number χdom(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _{dom}(G)$$\end{document} and the total domination number γt(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma _t(G)$$\end{document}; and the equivalence for triangle-free graphs. We study the complexity of the problem by proving its NP-completeness for arbitrary graphs having χdom(G)≥4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _{dom}(G) \ge 4$$\end{document} and by giving a polynomial time algorithm for recognizing graphs having χdom(G)≤3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _{dom}(G) \le 3$$\end{document}. We also give some bounds for planar and star-free graphs and exact values for split graphs.
引用
收藏
页码:713 / 727
页数:14
相关论文