Dominated Colorings of Graphs

被引:0
|
作者
Houcine Boumediene Merouane
Mohammed Haddad
Mustapha Chellali
Hamamache Kheddouci
机构
[1] University of Blida,LAMDA
[2] Université de Lyon,RO Laboratory, Department of Mathematics
[3] Université Claude Bernard Lyon 1,Laboratoire LIRIS, UMR CNRS 5205
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Dominated coloring; Total domination; Algorithms ; Triangle-free graphs; Star-free graphs; Split graphs; 05C15; 05C85;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce and study a new coloring problem of a graph called the dominated coloring. A dominated coloring of a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a proper vertex coloring of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} such that each color class is dominated by at least one vertex of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. The minimum number of colors among all dominated colorings is called the dominated chromatic number, denoted by χdom(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{dom}(G)$$\end{document}. In this paper, we establish the close relationship between the dominated chromatic number χdom(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{dom}(G)$$\end{document} and the total domination number γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _t(G)$$\end{document}; and the equivalence for triangle-free graphs. We study the complexity of the problem by proving its NP-completeness for arbitrary graphs having χdom(G)≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{dom}(G) \ge 4$$\end{document} and by giving a polynomial time algorithm for recognizing graphs having χdom(G)≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{dom}(G) \le 3$$\end{document}. We also give some bounds for planar and star-free graphs and exact values for split graphs.
引用
收藏
页码:713 / 727
页数:14
相关论文
共 50 条
  • [1] Dominated Colorings of Graphs
    Merouane, Houcine Boumediene
    Haddad, Mohammed
    Chellali, Mustapha
    Kheddouci, Hamamache
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 713 - 727
  • [2] Set colorings of graphs
    Hegde, S. M.
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (04) : 986 - 995
  • [3] COLORINGS AND ORIENTATIONS OF GRAPHS
    ALON, N
    TARSI, M
    COMBINATORICA, 1992, 12 (02) : 125 - 134
  • [4] SET COLORINGS OF GRAPHS
    BOLLOBAS, B
    THOMASON, A
    DISCRETE MATHEMATICS, 1979, 25 (01) : 21 - 26
  • [5] On the local colorings of graphs
    Omoomi, Behnaz
    Pourmiri, Ali
    ARS COMBINATORIA, 2008, 86 : 147 - 159
  • [6] FEASIBLE GRAPHS AND COLORINGS
    CENZER, D
    REMMEL, J
    MATHEMATICAL LOGIC QUARTERLY, 1995, 41 (03) : 327 - 352
  • [7] Iterated colorings of graphs
    Hedetniemi, SM
    Hedetniemi, ST
    McRae, AA
    Parks, D
    Telle, JA
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 81 - 108
  • [8] Nonrepetitive colorings of graphs
    Alon, N
    Grytczuk, J
    Haluszcak, M
    Riordan, O
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 336 - 346
  • [9] ON IRREGULAR COLORINGS OF GRAPHS
    Radcliffe, Mary
    Zhang, Ping
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2006, 3 (02) : 175 - 191
  • [10] ON TOTAL COLORINGS OF GRAPHS
    MCDIARMID, C
    REED, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 57 (01) : 122 - 130