Invariant Manifolds and Global Attractor of the Ginzburg–Landau Integro-Differential Equation

被引:0
|
作者
A. N. Kulikov
D. A. Kulikov
机构
[1] Demidov Yaroslavl State University,
来源
Differential Equations | 2022年 / 58卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1499 / 1513
页数:14
相关论文
共 50 条
  • [1] Invariant Manifolds and Global Attractor of the Ginzburg-Landau Integro-Differential Equation
    Kulikov, A. N.
    Kulikov, D. A.
    DIFFERENTIAL EQUATIONS, 2022, 58 (11) : 1499 - 1513
  • [2] Invariant Manifolds. Global Attractor of a Generalized Version of the Nonlocal Ginzburg–Landau Equation
    Kulikov A.N.
    Kulikov D.A.
    Journal of Mathematical Sciences, 2023, 270 (5) : 693 - 713
  • [3] Global attractor for a non-autonomous integro-differential equation in materials with memory
    Caraballo, T.
    Garrido-Atienza, M. J.
    Schmalfuss, B.
    Valero, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 183 - 201
  • [4] Global nonexistence for an integro-differential equation
    Wu, Shun-Tang
    Lin, Ching-Yan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (01) : 72 - 83
  • [5] Invariant Manifolds of a Weakly Dissipative Version of the Nonlocal Ginzburg–Landau Equation
    A. N. Kulikov
    D. A. Kulikov
    Automation and Remote Control, 2021, 82 : 264 - 277
  • [6] Invariant Manifolds of a Weakly Dissipative Version of the Nonlocal Ginzburg-Landau Equation
    Kulikov, A. N.
    Kulikov, D. A.
    AUTOMATION AND REMOTE CONTROL, 2021, 82 (02) : 264 - 277
  • [7] Global attractor for generalized 2D Ginzburg-Landau equation
    Li, YS
    Guo, BL
    PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 197 - 204
  • [8] Global exponential stability of impulsive integro-differential equation
    Xu, DY
    Zhu, W
    Long, SJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (12) : 2805 - 2816
  • [9] Global Existence and Controllability to a Stochastic Integro-differential Equation
    Chang, Yong-Kui
    Zhao, Zhi-Han
    Nieto, Juan J.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2010, (47) : 1 - 15
  • [10] The attractor of the stochastic generalized Ginzburg-Landau equation
    BoLing Guo
    GuoLian Wang
    DongLong Li
    Science in China Series A: Mathematics, 2008, 51 : 955 - 964