Theoretical and empirical analysis of trading activity

被引:0
|
作者
Mathias Pohl
Alexander Ristig
Walter Schachermayer
Ludovic Tangpi
机构
[1] University of Vienna,Faculty of Business, Economics and Statistics
[2] University of Vienna,Faculty of Mathematics
[3] Princeton University,Department of Operations Research and Financial Engineering
来源
Mathematical Programming | 2020年 / 181卷
关键词
91G80;
D O I
暂无
中图分类号
学科分类号
摘要
Understanding the structure of financial markets deals with suitably determining the functional relation between financial variables. In this respect, important variables are the trading activity, defined here as the number of trades N, the traded volume V, the asset price P, the squared volatility σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^2$$\end{document}, the bid-ask spread S and the cost of trading C. Different reasonings result in simple proportionality relations (“scaling laws”) between these variables. A basic proportionality is established between the trading activity and the squared volatility, i.e., N∼σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \sim \sigma ^2$$\end{document}. More sophisticated relations are the so called 3/2-law N3/2∼σPV/C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{3/2} \sim \sigma P V /C$$\end{document} and the intriguing scaling N∼(σP/S)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \sim (\sigma P/S)^2$$\end{document}. We prove that these “scaling laws” are the only possible relations for considered sets of variables by means of a well-known argument from physics: dimensional analysis. Moreover, we provide empirical evidence based on data from the NASDAQ stock exchange showing that the sophisticated relations hold with a certain degree of universality. Finally, we discuss the time scaling of the volatility σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, which turns out to be more subtle than one might naively expect.
引用
收藏
页码:405 / 434
页数:29
相关论文
共 50 条
  • [1] Theoretical and empirical analysis of trading activity
    Pohl, Mathias
    Ristig, Alexander
    Schachermayer, Walter
    Tangpi, Ludovic
    MATHEMATICAL PROGRAMMING, 2020, 181 (02) : 405 - 434
  • [2] Adverse selection costs, trading activity and price discovery in the NYSE: An empirical analysis
    Pascual, R
    Escribano, A
    Tapia, M
    JOURNAL OF BANKING & FINANCE, 2004, 28 (01) : 107 - 128
  • [3] An empirical analysis of NYSE specialist trading
    Madhavan, A
    Sofianos, G
    JOURNAL OF FINANCIAL ECONOMICS, 1998, 48 (02) : 189 - 210
  • [4] The impact of informed trading on dividend signaling: a theoretical and empirical examination
    Fuller, KP
    JOURNAL OF CORPORATE FINANCE, 2003, 9 (04) : 385 - 407
  • [5] Applying Routine Activity Theory to Cybercrime: A Theoretical and Empirical Analysis
    Leukfeldt, Eric Rutger
    Yar, Majid
    DEVIANT BEHAVIOR, 2016, 37 (03) : 263 - 280
  • [6] An empirical examination of information, differences of opinion, and trading activity
    Bessembinder, H
    Chan, K
    Seguin, PJ
    JOURNAL OF FINANCIAL ECONOMICS, 1996, 40 (01) : 105 - 134
  • [7] Investors' trading activity: A behavioural perspective and empirical results
    Kourtidis, Dimitrios
    Sevic, Zeljko
    Chatzoglou, Prodromos
    JOURNAL OF SOCIO-ECONOMICS, 2011, 40 (05): : 548 - 557
  • [8] The impact of the carbon trading market on corporate employment: Theoretical and empirical evidence
    Wang, Xing
    Li, Pengyu
    Yuan, Yangguang
    Zhang, Qianxiang
    ENERGY, 2025, 320
  • [9] Algorithmic Trading Using Markov Chains: Comparing Empirical and Theoretical Yields
    Svoboda, Milan
    Rihova, Pavla
    EUROPEAN FINANCIAL SYSTEM 2016: PROCEEDINGS OF THE 13TH INTERNATIONAL SCIENTIFIC CONFERENCE, 2016, : 787 - 793
  • [10] An empirical analysis of corporate insiders' trading performance
    Lei, Qin
    Rajan, Murli
    Wang, Xuewu
    CHINA FINANCE REVIEW INTERNATIONAL, 2012, 2 (03) : 246 - 264